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Abstract. In a recent paper, Enayat and  Le lyk [2024] show that second order arithmetic and

countable set theory are not definitionally equivalent. It is well known that these theories are bi-

interpretable. Thus, we have a pair of natural theories that illustrate a meaningful difference between

definitional equivalence and bi-interpretability. This is particularly interesting given that Visser and

Friedman [2014] have shown that a wide class of natural foundational theories in mathematics are

such that if they are bi-interpretable, then they are also definitionally equivalent. The proof offered

by Enayat and  Le lyk makes use of an inaccessible cardinal. In this short note, we show that the

failure of bi-interpretability can be established in Peano Arithmetic merely supposing that one of our

target theories are consistent.

We begin by recalling some basic definitions and set up our notation. A more precise and detailed

discussion can be found in [Visser, 2006, Visser and Friedman, 2014, Halvorson, 2019, Button and

Walsh, 2018] or [Meadows, 2023]. Let T and S be theories articulated in the language LT and LS

respectively. Suppose that they are mutually interpretable as witnessed by translations t : LS → LT

and s : LT → LS giving rise to functions t : mod(T ) → mod(S) and s : mod(S) → mod(T ) where

mod(T ) and mod(S) are the classes of models satisfying T and S respectively.1 We say that T and S

are definitionally equivalent if:

(1) A = s ◦ t(A) for all models A of T ; and

(2) B = t ◦ s(B) for all models B of S.

On the other hand, we say that T and S are bi-interpretable if, in addition to t and s witnessing mutual

interpretability, there are functions η and ν, uniformly definable over T and S respectively, such that:

(1) ηA : A ∼= s ◦ t(A) for all models A of T ; and

(2) νB : B ∼= t ◦ s(B) for all models B of S.

Informally, we have definitional equivalence when we have translations that allows us to go back and

forth to exactly where we started. Bi-interpretability, by contrast, is weaker in that we only return to

an isomorphic structure where the relevant isomorphism is definable. For most mathematical purposes

bi-interpretability seems to be compelling evidence that the theories in question can be regarded as

informally equivalent.

However, it is not difficult to find a toy example that pulls these equivalence relations apart. Let LT

be the empty language and let T be the theory that says there are infinitely many objects. More

specifically, we let T consist of the sentences ∃≥nx x = x for all n ∈ ω. Let LS be the language

We’re grateful to Ali Enayat for looking over our sketches of these proofs and providing helpful insights and encourage-
ment.
1We permit translations that make use of multiple dimensions and quotients.
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consisting of a single constant symbol c. And let S consist of the same sentences as T . Thus, S says

nothing at all about c. We now sketch a quick proof of the following:

Proposition 1. T and S are bi-interpretable, but not definitionally equivalent.

Proof. (Bi-interpretability) The essential idea is to move from a model of S to a model of T by

discarding the object denoted by c; and in the other direction, we move from a model of T to models

of S by using a three-dimensional quotient interpretation t to “add” a new object that will can be

denoted by c. More specifically, given a model A = ⟨A⟩ of T , we let our domain be A3 and then define

an interpretation for =̇ and c. Given x̄ = ⟨x1, x2, x3⟩, ȳ = ⟨y1, y2, y3⟩ from A3 we let

x̄=̇ȳ ⇔ (x2 = x3 ∧ y2 = y3 ∧ x1 = y1) ∨ (x2 ̸= x3 ∧ y2 ̸= y3)

and

x̄ = c ⇔ x2 ̸= x3.

Putting all of this together, we let t(A) = ⟨A3, cA, =̇⟩. In the other direction, we start with a model

B = ⟨B, b⟩ of S and provide an interpretation s by defining a new domain using the formula

δs(x) := (x ̸= c).

We then let s(B) = ⟨δBs ⟩ where δBs = {x ∈ B | B |= δs(x)}. Clearly, t and s witness mutual interpretabil-

ity. Finally, we define the required isomorphisms. Given a model A of T , we have s◦t(A) = ⟨E, =̇s◦t(A)⟩
where E = {x̄ ∈ A3 | A |= x2 = x3} and for x̄, ȳ ∈ E, =̇s◦t(A) = {⟨x̄, ȳ⟩ ∈ (A3)2 | A |= x1 = y1}. Thus,

we may let our isomorphism be defined by the formula η(x, ȳ) be x = y1 = y2 = y3. The definition of

ν uses similar techniques and we leave it to the reader.

(Not definitionally equivalence) Suppose toward a contradiction we have interpretation as giving rise

to functors t : mod(T ) → mod(S) and s : mod(S) → mod(T ) witnessing the definitional equivalence of

T and S. If we start with a model B = ⟨B, b⟩ of S, we have just two choices for our interpretation:

(1) we can remove – as we did above – b from the domain to obtain ⟨B\b⟩; or

(2) we can simply forget the denotation of b and retain the domain to give ⟨B⟩.

If we take option (1), we cannot have definitional equivalence since we have moved to a proper subset

of the original domain, which cannot be recovered. So we are stuck with option (2) and we have

t(B) = ⟨B⟩. Now if we are to have s ◦ t(B) = B, we must have s(⟨B⟩) = ⟨B, x⟩ for some x ∈ B. But

this would mean that we could define an element of an infinite set in the empty language. This is

plainly impossible as can be established with a simple automorphism argument. □

So much for toy theories. If we move to theories with more serious foundational credentials, things get

more interesting. First we recall a few definitions.2 We say that an interpretation is one-dimensional,

if the formula defining the domain of the interpretation has one free variable and thus, defines a subset

of domain of models of the interpreting theory. Say that an interpretation is identity preserving if it

translates the identity predicate to itself.3 We say that a one-dimensional interpretation is unrelativized

2These can be found in [Visser and Friedman, 2014] but we include them to make things a little more self-contained.
3So the translation t in the proof of Proposition 1 is multi-dimensional since it uses ordered triples. Moreover, we see
that it is not identity-preserving since, in order to form the quotient, we make an explicit definition of the identity

relation, denoted =̇, on those triples.
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if it does not restrict the domain.4 We say that a one-dimensional interpretation is direct if it is

unrelativized and preserves identity. A theory is said to be sequential if it directly interprets adjunctive

set theory, which is the theory saying that: there is an empty set; and for any sets x, y there is some z

containing exactly y and the members of x. Such a theory is capable of doing some basic coding. Any

serious foundational theory is obviously sequential.

Theorem 2. [Visser and Friedman, 2014] Let T be a sequential theory.5 Suppose that T and S are

bi-interpretable as witnessed by one-dimensional, identity preserving interpretations. Then T and S

are definitionally equivalent.

This theorem is particularly helpful. For example, it is well-known that: Peano arithmetic is bi-

interpretable with a finite version of ZFC;6 and ZFC is bi-interpretable with ZFC with foundation

removed and replaced by Aczel’s anti-foundation axiom. Each of these theories is sequential and the

interpretations linking them can be arranged to be identity preserving. Thus, we see that both pairs are

actually examples of definitionally equivalent theories. However, a crucial element in these argument is

the ability of these theories to eliminate the use of quotient interpretations by finding representatives

for the equivalence classes. In arithmetic, we just need to pick the least element; in set theory, we use

Scott’s trick, whereby we take the set of elements of the equivalence class of minimal rank. But not

all theories can perform this kind of trick. In set theory, we seem to need some form of reflection in

order to eliminate quotients.7

This idea provides a lead toward a natural pair of theories that are bi-interpretable but not definitionally

equivalent.8 In particular, ZFC− (ZFC without the powerset axiom)9 cannot perform Scott’s trick.10

And indeed, it is in this area that Enayat and  Le lyk find their example. Let ZFCcount be ZFC− with

an axiom stating that every set is countable.11 Let SOA be the theory of second order arithmetic with

full comprehension and choice for all definable sets of reals indexed by naturals.12 First we note that:

4The interpretation s in Proposition 1 is relativized since we use the formula δs to remove c from the domain of the

interpretation.
5Visser and Friedman actually use a weaker class of theories called conceptual theories in their paper, but this will not

affect the discussion in this paper.
6Some care is required in the axiomatization. We assume that we are using set induction rather than foundation. Or we
can add an axiom stating that every set is contained in a transitive set. See [Kaye and Wong, 2007].
7In model theory, this is known as eliminating imaginaries. See Section 4.4 of [Hodges, 1997].
8We note that Visser and Friedman [2014] do provide a pair of sequential theories that are bi-interpretable but not
definitionally equivalent. The example is interesting, however, the theories are not in common use and might be thought
of as being contrived for the purposes of the result. As such, we regard them as an unnatural pair of theories.
9We should also use Collection rather than Replacement. See [Gitman et al., 2016].
10It is worth noting that ZFC− can be augmented to a theory that can eliminate imaginaries by, for example, adding
the assumption that V = L which ensures that the universe has a definable well-ordering.
11Note that the C in ZFCcount is redundant, since the count axiom ensures that every set is well-ordered by a bijection
with ω.
12We adopt the logicians’ reals in the paper and say that R = P(ω). The choice schema then says that for any formula
φ(n, Y ) in the language of SOA, if for all n there is some Y such that φ(n, Y ), then there is some Z such that for all n,

φ(n, (Z)n), where (Zn) = {i ∈ ω | (i, n) ∈ Z}. See [Enayat and  Le lyk, 2024] and [Simpson, 1999] for more details. In the
latter, this theory is denoted as Σ1

∞−AC0 noting that the definable choice principles end up implying the comprehension
principles. See Section VII.6 and Lemma VII.6.6 in [Simpson, 1999] for more information. We note that these choice
principles are required since there are models of second order arithmetic with full comprehension where definable choice

fails for a Σ1
3-set: see Remarks VII.6.3 in [Simpson, 1999] and Example 15.57 in [Jech, 2003]. Finally, we also note that

SOA is also often notated as Z2 while PA is often denoted as Z1 [Hilbert and Bernays, 1934]. However, it is not always

clear whether Z2 is intended to include the definable choice principles we incorporate in SOA.
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Theorem 3. [Mostowski, 1961]13 ZFCcount is bi-interpretable with SOA.

Just to give the idea, we first note that since PA and finite ZFC are definitionally equivalent,14 we

can, without harm, think of the number domain of a model of SOA as being Vω. To move from a model

of ZFCcount to a model of SOA we just forget all the sets with rank > ω. This direction is trivial.

In the other direction, we start with a model of SOA and simulate the effect of hereditarily countable

sets using well-founded, extensional relations R on ω with top elements that collapse to be such sets.15

Since there are many such relations that collapse to a particular hereditarily countable set, the sets

are not in bijection with their representatives. This is addressed by a quotient interpretation that

defines a natural notion of identity on these relations. The required definable isomorphisms are then

given by: sending sets in a model of ZFCcount to those reals that collapse to code them; and sending

numbers and sets in models of SOA to those reals coding sets that are appropriately isomorphic to

them.16 Given that a quotient is required, this gives us some reason to doubt that these theories are

definitionally equivalent. Enayat and  Le lyk have confirmed this intuition.

Theorem 4. [Enayat and  Le lyk, 2024] ZFCcount is not definitionally equivalent with SOA, provided that

there is an inaccessible cardinal or there is an ω-model of the theory extending ZFC by an inaccessible

cardinal.17

Unlike the toy example above, this provides a concrete example of a pair of well-understood and very

commonly used theories that are bi-interpretable but not definitionally equivalent. We shall now prove

this claim without the inaccessible cardinal. Moreover, we’ll do this twice. First, with a simple ZFC

proof; and second, with an indirect proof in PA. The first proof exploits the fact that certain models

of SOA cannot define well-orderings of length ≥ ω1. The second proof exploits the fact that certain

models of ZFCcount cannot define linear orders of their domain.

13The attribution for this result is a little convoluted. One reason for this is that while the bones of the proof seem

to have been around since the late 1950s, the definition of bi-interpretability wasn’t formally isolated until [Ahlbrandt
and Ziegler, 1986], although similar ideas were in circulation in the 1970s: see, for example, [Osius, 1974]. We follow

convention and attribute the result to Mostowski, although [Mostowski, 1961] only appears to contain the easy direction

of the proof that delivers a model of SOA from ZFCcount essentially by truncation: see Theorem 7.15 in [Mostowski,
1979]. Given that the key trick in the other, more difficult direction involves Mostowski’s famous collapse function, this

convention still seems apropos. A detailed proof that SOA can interpret ZFCcount using trees is provided in Theorem

5.5 of [Apt and Marek, 1974] where they attribute the result to [Kreisel, 1968] and [Zbierski, 1971]. More subtle results
on these interpretations can be found in Section VII.3 of [Simpson, 1999] and, more recently, [Kanovei and Lyubetsky,

2025].
14This follows from Corollary 5.5 in [Visser and Friedman, 2014] and the fact that PA and finite ZFC are bi-interpretable

via identity preserving interpretations. Note also that by finite ZFC, we mean a theory that uses the Set Induction
schema rather than Foundation; or alternatively, we could include an axiom saying that every set is contained in a

transitive set. See [Kaye and Wong, 2007] for more details. Also note that we could just use ω and its subsets from a

model of ZFCcount to deliver a model of SOA.
15A detailed description of this kind of construction can be found in Chapter VII.3 of [Simpson, 1999].
16Note that these isomorphisms are only “functions” relative to the defined notion of identity in the quotient interpre-

tation. In particular, two reals are deemed identical if they collapse to the same set.
17We note that the statement of this theorem in [Enayat and  Le lyk, 2024] makes use of the weaker assumption that

ZFC plus an inaccessible cardinal is consistent. However, the proof given there seems to naturally work by using one of
the assumptions above. If we collapse an inaccessible cardinal, then the resultant version of H(ω1) gives us the model of

ZFCcount we want and the result can then be pulled back to the ground universe. But if we merely start with a model M
of ZFC plus an inaccessible and collapse, then the argument of the proof just shows that M thinks SOA and ZFCcount

aren’t definitionally equivalent. We have no reason to think M is correct about this unless M is, say, an ω-model. It is

not so easy to say which of these assumptions is preferable. While the first assumption has lower consistency strength

than the second, the second – unlike the first – can be accommodated by theories with less ontological overheads than
ZFC.
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1. Simple proof in ZFC

We start by recalling two well-known facts about forcing and use them to prove a lemma from which

our main claim quickly follows.

Fact 5. [Lévy, 1965] Let P be weakly homogeneous and G be P-generic over V . Suppose A ⊆ V and A

is definable in V [G] by a formula using parameters from V .18 Then A ∈ V .

Fact 6. (Laver-Woodin)19 If V is a generic extension of some inner model W , there is a formula

defining W in V using a parameter from W . More specifically, there is a formula φ(x, y) and r ∈ W

such that for all x

x ∈W ⇔ φ(x, r)V .

The following definition is the focus of our lemma below.

Definition 7. Let Γ ⊆ P(R) be a point-class. We say that Γ has the short well-ordering property if

every well-ordering R ∈ Γ has order type < ω1.

The following lemma provides the combinatorial content for our theorem.

Lemma 8. There is a generic extension V [G] of V that thinks OD ∩ P(R) has the short well-ordering

property.

Proof. We assume CH holds in V ; if necessary, just collapse the ordinals below 2ℵ0 . Now let G be

Col(ω, {ω1})-generic20 over V and work in V [G]. Suppose toward a contradiction that R is an OD

-well-ordering of reals that has order-type ≥ ω1. Then since we’ve collapsed V ’s continuum, we see

that field(R) ∩ (V [G]\V ) ̸= ∅. And since R is a well-ordering, we may define the R-least element x

of V [G]\V . This definition only makes use of the ordinals used in the definition of R and a parameter

from V given by Fact 6 that allows us to define V in V [G]. Fact 5, then tells us that x ∈ V , which is

a contradiction. □

This next lemma shows that the combinatorial lemma is enough for a goal.

Lemma 9. Suppose every ordinal definable well-ordering of a set of reals is shorter than ω1. Then SOA

is not definitionally equivalent with ZFCcount.

Proof. Let S be the first theory and let T be the second. Suppose toward a contradiction that we have

interpretations

t : mod(T ) ↔ mod(S) : s

18See the beginning of Section 2 in [Woodin et al., 2012] for a nice sketch of the idea behind the proof of this. If such
a set were definable in V [G], then the homogeneity of P ensures that it can already be defined in V using the forcing
relation.
19See [Reitz, 2007] or [Woodin, 2012] for a proof of this.
20Here, I’m following the definition given in Chapter 10 [Kanamori, 2003]. Thus, Col(ω, S) for S ⊆ Ord is intended to

collapse every ordinal in S to be countable in a generic extension. It is worth noting this since some authors will write
Col(ω, ω1) to denote what we are calling Col(ω, {ω1}).
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witnessing their definitional equivalence. Note that M = ⟨Hω1
,∈⟩ |= T . Then we see that t(M) =

⟨N0, N1, σ⟩ |= S.21 Now if s ◦ t(M) = M , we must be able to define a well-ordering of length ω1 in

t(M). We show that this is impossible.

Note first that the naturals N0 of t(M) must be well-founded since ω = ωs◦t(M) is definable in t(M)

and if its naturals were ill-founded, then t(M) couldn’t define a well-ordering of type ω. This means

that we can collapse t(M) to form a model N∗ = ⟨ω,N∗
1 , σ

∗⟩ ∼= t(M) where N∗
1 ⊆ P(ω). Now if t(M)

can define a well-ordering of length ω1, then so can N∗. Moreover, since N∗
1 ⊆ P(ω) we may assume

that any such well-ordering defined over N∗ is a well-ordering of a set of reals. But then since N∗
1 is

definable from Hω1
and t, we see that such a well-ordering is definable in the parameter, ω1, and thus,

ordinal definable. This contradicts our initial assumption. □

Remark. The proof above also shows that ZFCcount is not a retract (as in “half” of a bi-interpretation)

of SOA by one-dimensional interpretations. It can also be shown that ZFCcount is solid22 and from

this it can be shown that the model t(M) in the proof above is actually the standard model of second

order arithmetic; i.e., N∗
1 = P(ω).

Finally, we put the two lemmas together to get the desired result.

Theorem 10. SOA is not definitionally equivalent with ZFCcount.

Proof. Use Proposition 8 to move to a generic extension V [G] of the universe in which every ordinal

definable well-ordering of a set of reals is shorter than ω1. Then Lemma 9, tells us that the stated

theories are not definitionally equivalent in V [G]. The statement that these theories are definitionally

equivalent is arithmetic,23 thus, if it is true in V [G] it is also true in V . □

2. Proof in PA

As in the previous section, we start by proving a more general lemma from which the main claim

follows.24

Lemma 11. If we add a Cohen real to the universe V , then there is no ordinal definable relation S on

P(R) that is connected and asymmetric.

Proof. We are essentially using a simplification of the proof that the axiom of choice fails in the second

Cohen model as delivered in Theorem 5.19 of [Jech, 2008]. The plan is to describe, in a generic

extension, a pair P of sets of reals that has no ordinal definable element. To see that this suffices,

suppose there was an ordinal definable relation S on P(R) that is connected and asymmetric. Then

we may obtain an ordinal definable element of the pair P by taking the S-least element of the P .

21Here N0 is the number domain, N1 is the set domain, and σ is the interpretation of the non-logical vocabulary.
22See [Enayat, 2016] for the definition of solidity and a proof that this theory is solid.
23In particular, definitional equivalence can be articulated as a Σ0

3 statement: see Fact 14 below. To establish this,
observe that T and S are definitionally equivalent if there are natural numbers coding computable translations t and

s such that: every natural number coding a sentence φ such that either there is no natural number coding a proof

witnessing S ⊢ φ or there is a natural number coding a proof witnessing that T ⊢ t(φ); and every natural number coding
a formula ψ(x̄) in the language of T is such that there is a natural number coding a proof that T ⊢ ∀x̄(ψ(x̄) ↔ t◦s(ψ)(x̄));

and a pair of similar clauses for sentences ψ ∈ T and formulae φ(ȳ) in the language of S.
24For a related result establishing that there are models of ZFC with no definable global linear ordering with Cohen

forcing, see Theorem 3.1 in [Enayat, 2004].
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We start by defining a forcing P = ⟨P,≤⟩ where P consists of partial functions

p : (2 × ω) × ω ⇁ 2

ordered by reverse inclusion. This is intended to deliver us a pair of sets each containing infinitely

many Cohen reals. But do note that, in the codes, this is a minor variation of the usual forcing to

add a Cohen real. Let G be P-generic over V . We then define some useful names and the objects they

denote in V [G]. For n, i, j ∈ ω and e ∈ 2, we let

• ẋe,i = {⟨ǰ, p⟩ | p(n, e, i, j) = 1};

• xe,i = {j ∈ ω | ∃p ∈ G p(n, e, i, j) = 1} be a real;

• Ẋe = {⟨ẋn,e,i, 1⟩ | i ∈ ω};

• Xe = {xn,e,i | i ∈ ω} be a countable set of reals;

• Ṗ = {⟨Ẋn,0, 1⟩, ⟨Ẋn,1, 1⟩}; and

• P = {Xn,0, Xn,1} be a pair of countable sets of reals

This gives us the set P that we want. P contains exactly two sets X0 and X1. X0 contains a set of

Cohen reals x0,i for all i ∈ ω; and similarly, for Xn,1. Note that a simple density argument reveals

that ⊩ xe,i ̸= xe∗,i∗ whenever ⟨e, i⟩ ≠ ⟨e∗, i∗⟩. Thus, ⊩ Ẋ0 ̸= Ẋ1. Next observe that any permutation

of 2 × ω delivers an automorphism of P that can be extended to a map from V P to itself in a natural

way. Moreover, for any such automorphism, we have

p ⊩ φ(ẏ0, ..., ẏn) ⇔ π(p) ⊩ φ(πẏ0, ..., πẏn).

We now claim that there is no ordinal definable set denoted by a term t = t(ᾱ) such that t ∈ P . To

see this, suppose toward a contradiction that there is some p0 ∈ G that forces that there is such a t.

Note that since t is ordinal definable, it is not affected by automorphisms of P. We may then fix some

p ≤ p0 with p ∈ G that decides the value of t. For definiteness, suppose that t = X0, so we have

p ⊩ t = Ẋ0.

Now it can then be seen that there is an automorphism π of P such that:

• π(p) ̸⊥ p;

• πṖ = Ṗ ; and

• πẊ0 = Ẋ1.

We just describe the underlying permutation and leave the proof of these facts to the reader.25 First,

fix a sufficiently large k ∈ ω that for all i ≥ k, p cannot decide x0,i ∈ X0 or x1,i ∈ X1. We continue by

informally describing π by its behavior in the generic extension. First, we swap the interval [0, k) of

Cohen reals associated with X0 with the interval [k, 2k) associated with X1. Then we swap the interval

[0, k) of Cohen reals associated with X1 with the interval associated with [k, 2k) in X0,0. Above 2k, we

just swap the Cohen reals associated with X0 with those of X1. Much more formally, π : 2×ω → 2×ω

25A definition of a very similar permutation π can be found at the end of the proof of Lemma 5.19 at the top of page

71 in [Jech, 2008].
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is such that for all e ∈ 2 and i ∈ ω

π(e, i) =


⟨e− 1, i+ k⟩ if i ∈ [0, k)

⟨e− 1, i− k⟩ if i ∈ [k, 2k)

⟨e− 1, i⟩ if i ∈ [k, ω)

Recalling that t is unaffected by π, we see that

π(p) ⊩ t = πẊ0

and so

p ∪ π(p) ⊩ t = Ẋ1

which is a contradiction, since ⊩ Ẋ0 ̸= Ẋ1. □

The Lemma above is demonstrated using ZFC. However, it is not difficult to see that the proof can be

adapted to the context of ZFCcount where we use ordinary definability rather than ordinal definability.

Moreover, the proof works to show that there is no such definable relation on any domain (including

the universe itself) that extends the set A delivered in the proof.

Corollary 12. (ZFCcount) If we add a Cohen real to the universe, then there is no definable relation

S on the extended universe that is connected and asymmetric. More precisely, for all formula φS(x, y)

of L∈, we have

⊩Add(ω,1) ∃x∃y(φS(x, y) ↔ φS(y, x)).

Before, we prove the result in PA, let us first give a quick proof in ZFCcount that may give a clearer

picture of the underlying idea.

Theorem 13. (ZFCcount) SOA is not definitionally equivalent with ZFCcount, if one of these theories

is consistent.

Before we give the proof, let us first discuss the statement of this theorem and how it differs from

Theorems 4 and 10. The first thing to note is that Theorem 4 makes use of a consistency assumption

that cannot be proved in ZFC. Theorem 10 arguably improves this by removing that assumption and

just proving the result in ZFC. Theorem 13, however, also uses a consistency statement. One might

think that this has taken us a step backwards, but this would be misguided. Here, we require the

assumption since ZFCcount cannot prove the consistency of either SOA or ZFCcount, although it can

prove their equiconsistency. Without the ability to prove the consistency of one of these theories, it

will not be possible to deliver a model witnessing the failure definitional equivalence. Moreover, if one

(and thus, both) of them are inconsistent they will be vacuously definitionally equivalent since they

have no models. In contrast, the background assumptions of both Theorems 4 and 10 are sufficient

to prove the consistency of both SOA and ZFCcount. Thus, Theorem 10 has also been improved by

using a background theory that is insufficient to prove the consistency of its target theories.Of course,

other theories weaker than ZFCcount, like KP , will also be able to prove the theorem above. Our final

result below is proved in the arithmetic theory PA, which seems fitting since definitional equivalence

can be articulated as an arithmetic statement.
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Proof. We work informally in ZFCcount. Suppose toward a contradiction that we have interpretations

t : mod(ZFCcount) ↔ mod(SOA) : s

witnessing that SOA and ZFC− are definitionally equivalent. Let M be a model of ZFCcount and

without loss of generality suppose that it is countable and satisfies V = L. Now let c be a Cohen

real over M. Then M[c] satisfies ZFCcount and the statement that its universe is constructed from

c; i.e., V = L[c].26 Using Lemma 12 in M[c], we see that M[c] cannot define a linear ordering of its

domain. On the other hand, t(M[c]), as a model of SOA, can easily define a linear order of its entire

domain using, say, the lexicographic ordering of 2ω. But since ZFCcount and SOA are definitionally

equivalent, we see that M[c] and t(M[c]) share the same domain and thus, any relation definable over

t(M[c]) is also definable M[c]. This is a contradiction. □

We’re almost ready for the final result, but it will be helpful to first give this alternative, syntactic

characterization of definitional equivalence that is amenable to use in theories of arithmetic.

Fact 14. Let T0 and T1 be theories articulated in L0 and L1 respectively. Then T0 and T1 are def-

initionally equivalent, if there are translations t0 : L1 → L0 and t : L0 → L1 giving rise to direct

interpretations such that for i ∈ {0, 1}:27

(1) For all sentences φ ∈ Li, if Ti ⊢ φ, then Ti−1 ⊢ ti−1(φ); and

(2) For all formulae φ(x̄) ∈ Li, Ti ⊢ ∀x̄(φ(x̄) ↔ ti ◦ ti−1(φ)(x̄)).

Finally, we are in position to demonstrate the main claim, by proving a lemma from which the result

follows trivially.

Lemma 15. (PA) ZFCcount cannot interpret SOA via a direct interpretation; i.e., an interpretation

that preserves identity and the domain, if either ZFCcount or SOA is consistent.

Proof. We proceed by contraposition working informally in PA. Thus, we suppose that we have a

translation t : LSOA → L∈ giving rise to a direct interpretation such that for all φ ∈ LSOA, if

SOA ⊢ φ, then ZFCcount ⊢ t(φ). And we aim to show that ZFCcount and SOA are inconsistent.

First observe that using, say, the lexicographic ordering on subsets of ω, there is formula ψ(x, y) such

that

SOA ⊢ ∀x∀y(ψ(x, y) ↔ ¬ψ(y, x)).

Thus, we see that

ZFCcount ⊢ ∀x∀y(t(ψ)(x, y) ↔ ¬t(ψ)(y, x)).

However, by Corollary 12, we know that for all formulae χ(x, y) of L∈, ZFCcount proves that

(2.1) ⊩Add(ω,1) ∃x∃y(χ(x, y) ↔ χ(y, x)).

Moreover, by standard arguments we know that ZFCcount proves the following:

26Note that since there is no guarantee that M is well-founded, we cannot define M[G] using the standard V al function
that is familiar from [Kunen, 2006] or [Shoenfield, 1971]. Rather, we define membership and identity in the model using

the forcing relation. So, for example, given P-names ẋ and ẏ, we let ẋ ∈M[G[ ẏ iff there is some p ∈ G such that
p ⊩ ẋ ∈ ẏ. See [Corazza, 2007] or [Maddy and Meadows, 2020] for more details.
27See [Visser, 2006] for more discussion of this and similar results.
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(1) ⊩Add(ω,1) φ, for all axioms φ of ZFCcount;

(2) ⊩Add(ω,1) is closed under proof in first order logic (i.e., if Γ ⊢ φ and ⊩Add(ω,1) γ for all γ ∈ Γ,

then ⊩Add(ω,1) φ); and

(3) ⊮Add(ω,1) ⊥.

Note that each of these claims are proved in ZFCcount not our background theory PA. As such,

we can pluck these results directly from the textbooks.28 Using the fact that PA proves internal

Σ0
1-completeness29 we see that ZFCcount proves that ZFCcount ⊢ ∀x∀y(t(ψ)(x, y) ↔ ¬t(ψ)(y, x)) and

thus, we may use (2) and (1) to show that that ZFCcount proves

⊩Add(ω,1) ∀x∀y(t(ψ)(x, y) ↔ ¬t(ψ)(y, x)).

Moreover, using 2.1, we see that

⊩Add(ω,1) ∃x∃y(t(ψ)(x, y) ↔ t(ψ)(y, x))

and so ZFCcount proves that ⊩Add(ω,1) ⊥. This implies that ZFCcount is inconsistent. And since the

equiconsistency of ZFCcount and SOA is clearly provable in PRA, we see that SOA is also inconsistent

as required. □

Then since interpretations witnessing definitional equivalence must be direct, we see that:

Corollary 16. (PA) ZFCcount and SOA are not definitionally equivalent, if one of those theories is

consistent.

Thus, we have a proof of the arithmetic claim that ZFCcount and SOA are not definitionally equivalent

conducted in a standard theory of arithmetic, PA. One might hope that to obtain the result above

from a weaker theory like PRA. However, the use of internal Σ0
1-completeness in the proof above

seems to tell us that, at least for this strategy, some form of induction is required in our metatheory.30

As such, we leave open the question of whether PRA can prove that ZFCcount and SOA are not

definitionally equivalent.
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W. Hugh Woodin, Jacob Davis, and Daniel Rodŕıguez. The HOD Dichotomy, pages 397–419. London

Mathematical Society Lecture Note Series. Cambridge University Press, 2012.

P. Zbierski. Models for higher order arithmetics. Bulletin de l’Académie Polonaise des Sciences - Série
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