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Perfect set theorems are theorems of the following kind:

Theorem Template. Let X be some kind of set, then one of the following will hold:

1. X has a perfect subset (and then possibly something about this perfect subset)

2. X is tractable in some way

This note contains the perfect set theorems for closed and analytic (Σ˜1
1) sets in the Baire

space.

1 Perfect set theorem for closed sets

Definition 1.1. A closed set X ⊆ ωω is the body [T ] of a tree T ⊆ ω<ω.

The proof of the perfect set theorem demonstrates a common technique that has many
different variants for later use. The technique involves eliminating isolated elements, which
will remind the analysts of the Cantor-Bendixson derivative. Let us first define an increasing
sequence of isolated nodes in a tree.

Definition 1.2. Let T be a tree ⊆ ω<ω. We say a node s is isolated in T iff it is an
element of T and doesn’t split below (i.e., there are no extensions σ0, σ1 ≻ s in T that are
incompatible).

Definition 1.3. Given a tree T ⊆ ω<ω, define an increasing sequence of sets Tα as follows:

T0 = ∅

Tλ =
⋃
β<λ

Tβ if λ is a limit ordinal

Tα+1 = Tα ∪ {s ∈ T | s is isolated in T ∖ Tα}

Lemma 1.4. If T ⊆ ω<ω is a tree, then there is some countable ordinal δ when Tδ = Tδ+1.

Proof. This is because, if T0 ⊊ T1 ⊊ T2 ⊆ ... ⊊ Tα ⊊ Tα+1 ⊊ ... lasts ≥ ω1 many steps,
we would have collected an uncounable subset of T , which has at most countably many
elements.

So for any tree T , there will be a least ordinal countable ordinal δ for which Tδ = Tδ+1.
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Theorem 1.5 (The case where T ̸= Tδ). For any T and δ as above, if T ̸= Tδ, then there is
an injection from 2ω into [T ].

Proof. Almost by definition, T ∖Tδ is the set of nodes in T that will always split. So we can
map 2<ω into T by mapping splits to splits recursively. More concretely, set f(⟨⟩) = ⟨⟩, and
if f(s) ∈ T∖Tδ is defined, then by assumption there are at least two incompatible extensions
f(s)⌢m, f(s)⌢n below it. Pick the least such pair m < n and map s⌢0 to f(s)⌢m and s⌢1
to f(s)⌢n. (Visually, we are “stretching” the infinite binary tree to “fit” its splits to those
on T ∖ Tδ). Finally for x ∈ 2ω set F (x) =

⋃
n∈ω f(x ↾n).

On the other hand, if T = Tδ, then this provides a fertile ground for an effective analysis
of T . First, notice that this would imply that each node in T becomes isolated at some
point, and then gets collected at the next stage. This is just another way of saying every
node of T is isolated in some T ∖ Tα for α < δ , and then it gets in Tα+1.

Definition 1.6. For each node s ∈ T , call the unique ordinal α where this happens its
isolation rank (i.e., least α such that s ∈ Tα+1 ∖ Tα), written ρ(s).

A few things to notice:

• Nodes with smaller isolation ranks get picked up by Tα earlier in the process.

• The empty sequence always has the maximum isolation rank, because it always gets
picked up last.

• If s ≺ t, then ρ(s) ≥ ρ(t).

Observation 1.7. If x ∈ [T ], then the isolation ranks of x ↾ 0, x ↾ 1, x ↾ 2, ... is a non-
increasing sequence of ordinals. So this sequence of ordinals must be eventually constant.
Since it won’t cause any confusion, we also call this eventual ordinal constant the isolation
rank ρx of x.

Theorem 1.8 (The case where T = Tδ). For a tree T with T = Tδ (recall the notations
above), if x ∈ [T ] has isolation rank ρx < δ, as witnessed by x ↾m, then x is definable from
T, ρx, x ↾m

Proof. To say x has isolation rank ρx (witnessed by x ↾m) is to say that, in T ∖ Tρx , the
only extensions to x ↾m are x ↾(m+1), x ↾(m+2), x ↾(m+3), .... But then it is now easy to

define x: set x(i) = j iff

{
(x ↾m)(i) = j i < m

(∃q ∈ T ∖ Tρx)(x ↾m ≺ q ∧ q(i) = j) i ≥ m

In other words, to “compute” x(i) from T and ρx, we only need to build Tρx and remove
it from T , and then just brute-force search through finite sequences of natural numbers in
that tree to see if any extends x ↾m. By the assumptions that x ∈ [T ] and x ↾m is isolated
in T ∖ Tρx , for each length k ≥ m a unique extension exists. Moreover, all the extensions
cohere (meaning their union is a real number, in this case x).
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Figure 1: Once Tρx is removed from T , x ↾m becomes isolated and hence x becomes definable
by brute-force search through remaining nodes that extend it

Observation 1.9. The definition of x above is absolute to L[T ].

Proof. This is because the transfinite recursion constructing Tα’s from T , the definition of
isolation ranks, and the definition of x (which is arithmetic) only involve ∆0 formulas with
parameters in L[T ].

Corollary 1.10 (Perfect set theorem for closed sets). Let X ⊆ ωω be the body of some tree
T , then either X has a perfect subset, or X ∈ Lω1 [T ] (hence countable).

Proof. We’ve proved almost everything, except that X ∈ Lω1 [T ]. This is via absoluteness
considerations. The construction process Tα and the arithemtical definition of x are both
absolute between V and L[T ]. And δ < ω1. We’ve shown that X ⊆ Lδ+ω[T ], and so X can
be defined as the paths through T in that level, which we know are all of them.

Remark. If you really think about it, all that there is to the proof is already captured in
the lyrics to Lemon Tree by Fool’s Garden. Isolation is good for you; if all that you can see
is the lemon tree then you can define the lemon tree, etc etc.
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2 Perfect set theorem for analytic sets

Definition 2.1. An analytic set X ⊆ ωω is the projection p[T ] of the body of a tree
T ⊆ ω<ω × ω<ω. Recall: p[T ] := {x | (∃y)(x, y) ∈ [T ]}

Example 2.2. One of the first analytic sets is Luzin’s set A of sequences containing a
progressively divisible subsequence:

A(x) ⇔ ∃n0 < n1 < n2 < ...x(ni) divides x(ni+1)

It is the projection of the tree of attempts searching for such a sequence:

T := {(s, t) | the t(0), t(1), ..., t(n)th places of s are not a counterexample

to progressive divisibility for any n < length(t)}

Furthermore, this set is Σ˜1
1-complete, meaning that every analytic set can be obtained as the

continuous pre-image of this set.

Remark. Hopefully, the above example brings to mind the set of directed graphs containing
a clique or a Hamiltonian path. These are of course classic examples of NP-complete sets.
Indeed, in many aspects we have good reasons to think of the NP sets as finitary analogues
of the analytic sets and vice versa. As a matter of fact, the sets

A := {x ∈ ωω | x codes a countable graph with an infinite clique}
B := {x ∈ ωω | x codes a countable graph with a Hamiltonian path}

are both Σ˜1
1-complete.

The perfect set theorem for analytic sets is proved using a similar technique to closed
sets. First we define the notion of isolation.1

Definition 2.3. Given a tree T ⊆ ω<ω × ω<ω and (u, v), we say (u, v) is isolated in T iff
(u, v) ∈ T and it has no extensions in T that are incompatible in the first coordinate. In
other words, every extension of (u, v) in T will be compatible in the first coordinate.

Given a tree T ⊆ ω<ω × ω<ω, construct again a sequence of sets Tα as follows:

T0 = ∅

Tλ =
⋃
β<λ

Tβ if λ is a limit ordinal

Tα+1 = Tα ∪ {(u, v) ∈ T | (u, v) is isolated in T ∖ Tα}

Lemma 2.4 and Theorem 2.5 are proved in the same manner as before.

1There’s some slight clash of notation here. I’ve defined isolation and isolation rank for closed sets in
the previous section. Technically the same definition generalizes to the closed set [T ] ⊆ ω × ω. But what is
terminological consistency in the face of a convenient proof? Hence I’ve chosen to redefine what isolation
means for this specific proof.
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Lemma 2.4. There is a least countable ordinal δ for which Tδ = Tδ+1.

Theorem 2.5 (The case where T ̸= Tδ). For any T and δ as above, if T ̸= Tδ, then there is
an injection from 2ω into p[T ].

Now, if T = Tδ, then every node in T becomes isolated at some point. That is, for
every (u, v) ∈ T , there is a least ordinal α such that (u, v) is isolated in T ∖ Tα and then
(u, v) ∈ Tα+1. Let us call this ordinal α the isolation rank of (u, v), written ρ(u, v). Again,
(∅, ∅) has the highest isolation rank, and if (u, v) ≺ (u′, v′), then ρ(u, v) ≥ ρ(u′, v′). That is,
as you descend down a path, the isolation ranks can’t go up (it can only go down or remain
the same).

Recall if x ∈ p[T ], then there is some y such that (x, y) ∈ [T ]. That is, there is some y
such that (x ↾n, y ↾n) ∈ T for all n ∈ ω.

Observation. So, if x ∈ p[T ], as witnessed by y, then the sequence

(ρ(∅, ∅), ρ(x ↾ 1, y ↾ 1), ρ(x ↾ 2, y ↾ 2), ...)

is a non-increasing sequence of ordinals. Hence it must be eventually constant.

Theorem 2.6 (The case where T = Tδ). For any T and δ as above, such that T = Tδ, if
x ∈ p[T ] as witnessed by y, and (ρ(∅, ∅), ρ(x ↾ 1, y ↾ 1), ρ(x ↾ 2, y ↾ 2), ...) is eventually constant
starting at ρ(x ↾m, y ↾m), then x is definable from T, x ↾m, y ↾m, ρ(x ↾m, y ↾m).

Proof. Again, the assumptions imply that (x ↾m, y ↾m) is isolated in T ∖ Tρ(x ↾m,y ↾m). This
means that every extension of the pair (x ↾m, y ↾m) in T ∖ Tρ(x ↾m,y ↾m) must be compatible
in the first coordinate. In other words, every extension of (x ↾m, y ↾m)in T ∖ Tρ(x ↾m,y ↾m)

will have the form (x ↾ k, q) for some k ≥ m and q ∈ ω<ω.
But it is now easy to define x: set x(i) = j iff{

(x ↾m)(i) = j i < m

(∃(p, q) ∈ T ∖ Tρ(x ↾m,y ↾m))((x ↾m, y ↾m) ≺ (p, q) ∧ p(i) = j) i ≥ m

In other words, to “compute” x(i) from T, x ↾m, y ↾m, ρ(x ↾m, y ↾m), we only need to
build Tρ(x ↾m,y ↾m) and remove it from T , and then just brute-force search through pairs of
finite sequences of natural numbers to see if any extends (x ↾m, y ↾m). Since (x ↾m, y ↾m)
is isolated and for each length k ≥ m, extensions of length k exist and all cohere in the first
coordinate (recall the isolation rank of (x ↾m, y ↾m) is that eventual ordinal constant), this
definition defines x ∈ p[T ].

Corollary 2.7 (Perfect set theorem for analytic sets). Let X ⊆ ωω be the projection p[T ] the
body of some tree T , then either X has a perfect subset, or X ∈ Lω1 [T ] (hence countable).

Proof. Again, this is via absoluteness considerations by noticing that the construction process
Tα and the arithemtical definition of x are both absolute between V and L[T ].
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3 Some more examples of perfect set theorems

Theorem 3.1 (Harrison). If A is Σ1
1, then either X has a perfect subset or there exists a

computable ordinal α such that every element of A is computable by ∅(α).

Theorem 3.2 (Guaspari, Sacks, Kechris). If X is Π1
1, then either X has a perfect subset,

or X ⊆ C1 := {x ∈ ωω | x ∈ Lωx
1
}

The set C1 is called the largest countable thin set.

Theorem 3.3. If A is Σ1
2(a), then either A has a perfect subset, or A ∈ L[a]

Under the assumption that C2(a) := ωω ∩ L[a] is countable, C2(a) is called the largest
countable Σ1

2(a) set. People have been somewhat obsessed with these sets since the 80s.
The above theorem is a consequence of the more general result.

Theorem 3.4 (Mansfield, Solovay). If X is the projection p[T ] of the body of T ⊆ ω<ω×Y <ω

for some set Y , then either X has a perfect subset (moreover the tree corresponding to that
perfect set is in L[T ]), or X ∈ L[T ].

6


	Perfect set theorem for closed sets
	Perfect set theorem for analytic sets
	Some more examples of perfect set theorems

