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This note contains reminders for roughly the following:

1. transitive models

2. measurable cardinals

3. reflection

4. constructibility

5. ordinal definability

The intended audience is participants of the Fudan 2022 Logic Summer School, course
on large cardinals beyond choice, taught by Gabriel Goldberg.

This is more of a collection than presentation. I assume most readers have seen at least
parts of the following at least once. If not, the material is standard and can be found in
standard textbooks on set theory. Off we go...

1 Transitive Models
Definition 1. A transitive model of some theory T is a transitive set or proper class M ,
such that (M,∈) � T .

Remark 2. Transitive models are usually gotten from the following ways:

1. by assumption (“assume T has a transitive model...”)

2. follows from large cardinals (typically in the forms of Vκ, Hκ, Lκ or elementary sub-
models of them)

3. inner models construction (L,HOD, L(R), L[X],HOD(R), and so on)

4. forcing construction (makes another trnsitive model out of one that you already have)

Another way of getting transitive models is by collapsing a well-founded model. Recall
that a structure (M,E) is well-founded (with respect to the relation E), iff there is no infinite
descending E-chain. To collapse a well-founded model is to apply the following tool:
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Theorem 3. (Mostowski Collapse) Let (X,E) be a (possibly proper class) structure, where
E ⊆ X ×X satisfies the following conditions:
1. (X,E) is extensional, i.e., ∀a, b ∈ X a = b ⇐⇒ (∀c ∈ X cEa ⇐⇒ cEb)
2. E is well-founded
3. E is set-like, i.e., for each a ∈ X, the class ext(a) = {b ∈ X | bEa} is a set.
Then there is a unique transitive M and a unique isomorphism π : (X,E) → (M,∈)

Transitive models of ZF(C) look a lot like V . The following facts will make this claim
more precise.

Definition 4. A formula φ is said to be absolute for a transitive model M iff,

∀x1, ..., xn ∈ M φM(x1, ..., xn) ↔ φ(x1, ..., xn)

where φM denotes φ with quantifiers restricted to M . φ is said to be upward-absolute iff
∀x1, ..., xn ∈ M φM(x1, ..., xn) → φ(x1, ..., xn); downward absolute iff
∀x1, ..., xn ∈ M φ(x1, ..., xn) → φM(x1, ..., xn)

Fact 5.
1. ∆0 formulas are absolute for all transitive classes (or absolute for short)
2. Σ1 formulas are upward-absolute.
3. Π1 formulas are downward-absolute.
4. ∆1 formulas are absolute.

Remark 6. The above facts relate truth in M and truth in V . Sometimes it is necessary
to consider the relation between truths of two models M ⊆ N . Definition of absoluteness is
modified in the obvious way.

A general fact about transitive models of ZFC is that they are entirely determined by
what sets of ordinals they have (recall that under ZFC, every set is coded by a set of ordinals).

Proposition 7. Let M,N be transitive models of ZF with the same ordinals, such that for
every α, PM(α) = PN(α). Let at least one of them satisfy Choice. Then M = N

Proof. Without loss of generality, suppose M satisfies AC. Since Göddel’s pairing function
Γ : ON × ON → ON is absolute, we note that for every ordinal α, we have P(α × α)M =
P(α× α)N as well.

First we show M ⊆ N . Let X ∈ M . By (AC)M , we see that there is some f ∈ M such
that f : θ ↔ tr cl({X}) for some ordinal θ ∈ M . Now we define the relation E on θ as
follows: αEβ ⇐⇒ f(α) ∈ f(β). Now E is just a set of ordered pairs of ordinals in M ,
so by assumption E ∈ N . In N , we may take the Mostowski collapse of (θ, E) and get an
isomorphic (T,∈). But notice that this is just tr cl({X}). Now since X ∈ tr cl({X}) ∈ N
and N is transitive, we have X ∈ N .

Now we show N ⊆ M . We will prove this by ∈-induction. Let X ∈ N and suppose
that the claim holds for every x ∈ X (i.e., X ⊆ M). Take Y ∈ M such that X ⊆ Y . So
we consider f ∈ M which well-orders Y . Since M ⊆ N , this f will be in N and hence
f(X) ∈ N . But f(X) ⊆ ON , so f(X) ∈ M . Taking f−1[X], we have that X ∈ M .
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2 Measurable Cardinals
Definition 8. Let X be a set, a filter on X is a collection U of subsets of X, satisfying

1. X ∈ U

2. ∅ /∈ U

3. (A ∈ U ∧B ∈ U) → A ∩B ∈ U

4. (A ∈ U ∧B ⊇ X) → B ∈ U

Moreover, U is an ultrafilter iff for every Y ⊆ X, either Y ∈ U or (X r Y ) ∈ U .

Remark 9. First, in the present context, this definition is usually applied to ordinals/cardinals
or some related objects.

Second, Observe that if U is a filter on a cardinal κ, then U ⊆ P(κ); so: U ∈ PP(κ).
For a cardinal κ, if there is a filter U on κ, then U ∈ Vκ+2.

Definition 10. Let κ be a cardinal and let U be a filter on κ. We say U is nonprincipal,
if U doesn’t contain any singleton. That is, U is nonprincipal iff there is no {α} ⊆ κ such
that {α} ∈ U .

We say U is κ-complete, if the following holds:
For any λ < κ, if we have {Xα | α < λ} all in U (this means: X0 ∈ U,X1 ∈ U,X2 ∈ U, ...),
then

∩
α<λ Xα ∈ U .

Definition 11. (Ultrapower)
Given a structure M , and an ultrafilter U on κ, we define the following relations on the
product Πi∈κM := {f | f : κ → M}:

f =∗ g ⇐⇒ {i ∈ S | f(i) = g(i)} ∈ U
f ∈∗ g ⇐⇒ {i ∈ S | f(i) ∈ g(i)} ∈ U

We define equivalence classes of Πi∈κM modulo =∗:

[f ] = {g | f =∗ g ∧ ∀h(h =∗ f → rank(g) ≤ rank(h))}

(Note: the underlined clause is called “Scott’s trick”. This ensures the [f ]’s are sets. Exercise:
show that, given an f : κ → V , the class {g | f =∗ g} is not a set. Hint: you can always
modify f on 1 single input, without altering whether f =∗ g.)
The ultrapower of M is the structure of these equivalence classes UltU(M) = Πi∈κM/U =
{[f ] : f ∈

∏
i∈κM}. Presently we are concerned with the case where M is the von Neumann

universe V . Sometimes Ult is used as the shorthand for UltU(V ), or its Mostowski collapse
when it’s well-founded.

Fact 12. 1. if U is a κ-complete nonprincipal ultrafilter on κ, then Ult is set-like and
well-founded. This implies that it is isomorphic to a transitive model M ⊆ V . When
no ambiguity arises, we write M and Ult and UltU(V ) interchangeably.
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2. Ult is elementarily equivalent to V (they satisfy the same sentences). This follows from
Ĺoś’s Theorem.

Definition 13. An elementary embedding is a function j : M → N such that for all x⃗ ∈ M
and for all formulas φ(x⃗): M � φ(x⃗) ↔ N � φ(j(x⃗))

Claim 14. The function jU : V → Ult befined by jU(a) = [ca] is an elementary embedding,
where for each a ∈ V , [ca] is the equivalence class of the constant functions ca(i) = a which
map every index i to a.

Proof. Let a ∈ V , then by Łoś’ theorem, V � φ(a) iff {i ∈ κ | V � φ(ca(i))} ∈ U iff Ult
� φ(ca) iff Ult � φ([j(a)]).

Definition 15. The critical point of j, written as crit(j), is the least ordinal moved by j.

From an ultrafilter, we get an elementary embedding. Conversely, from an elementary
embedding, we get an ultrafilter too.

Definition 16. Let U be an nonprincipal ultrafilter on κ. We say U is normal if it satisfies
any one of the following equivalent definitions:

1. U is closed under diagonal intersection.

2. The U -almost everywhere version of Fodor’s theorem holds: if f : κ → κ is such that
{i < κ | f(i) < i} ∈ U , then there is some α < κ such that {i < κ | f(i) = α} ∈ U .

3. the equivalence class of the identity function id : κ → κ gets represented as κ in the
ultrapower. That is, [id]U = κ.

Theorem 17. If j : V → M is a nontrivial elementary embedding and crit(j) = κ, then the
set U ⊆ P(κ) defined by

X ∈ U ⇔ κ ∈ j(X)

is a normal κ-complete nonprincipal ultrafilter on κ. The U defined in this way is sometimes
called the normal measure derived from j, or the derived measure.

Theorem 18 ((Facts about ultrapower embedding)). Let κ be a measurable cardinal, wit-
nessed by ultrafilter U . Let j : V → M be the ultrapower embedding. Then:

1. j is the identity when restricted to Vκ.

2. crit(j) = κ and j(κ) > κ.

3. κ must be inaccessible.

4. Vκ+1 = (Vκ+1)
M , and κ+ = (κ+)M .

5. 2κ ≤ (2κ)M < j(κ) < (2κ)+

6. ((dis-)continuity points of j) if λ is a limit ordinal with cof(λ) ̸= κ, then j(λ) =
supα<λ j(α); if cof(λ) = κ, then j(λ) > supα<λ j(α)
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7. (fixed points of j) if λ is a strong limit cardinal with cof(λ) ̸= κ, then j(λ) = λ.

8. κM ⊆ M , but κ+
M ̸⊆ M .

9. U /∈ M .

Proof. See, for example, Lemma 17.9 in Jech’s Set Theory.

Corollary 19. If j : V → M is the ultrapower embedding from some ultrafilter U on κ,
then M ̸= V .

3 Reflection
With a measurable cardinal and an elementary embedding, we can carry out what’s called
reflection arguments. Here’s an example:

Theorem 20. If κ is measurable, then there must be some inaccessible cardinal λ < κ.

Proof. Let j : V → M be an elementary embedding with crit(j) = κ. We know V � “κ
is inaccessible”, but also inaccessibility is Π1, hence M � “κ is inaccessible”. This implies
M � ∃λ < j(κ)“λ is inaccessible”. Pulling this fact back to V by elementarity of j, we get
V � ∃λ < κ“λ is inaccessible”.

It is not hard to generalize this to show that there are 2, 3, 4, ... many inaccessible cardinals
below κ.

This fact can be generalized:

Theorem 21. If κ is measurable, and j : V → M with crit(j) = κ. If U the normal measure
derived from j, then {λ < κ | λ is inaccessible } ∈ U .

Proof. Whether κ is inaccessible is decided in Vκ+1 (why?). But we have that Vκ+1 =
(Vκ+1)

M . So M � κ is inaccessible. Let I := {λ < κ | λ is inaccessible }. Now, κ is an
inaccessible below j(κ), that is κ ∈ j(I). By definition of U , we have I ∈ U .

The above is a typical example of a reflection argument. In a reflection argument, we use
the structural relation between M and V to extract information about kappa or Vκ. Here’s
another example:

Theorem 22. Let κ be measurable with normal measure U . If {λ < κ | 2λ = λ+} ∈ U ,
then 2κ = κ+.

Proof. Let jU : V → M be the ultrapower embedding by U . Begin by recalling that, by
normality, κ is represented by [id]U in M . So,

M � 2κ = κ+ ⇔ M � 2[id] = [id]+ ⇔ {i < κ | 2id(i) = id(i)+} ∈ U ⇔ {λ < κ | 2λ = λ+} ∈ U

Finally, since M and V agree on what 2κ and κ+ are, we have that (actually in V ) 2κ =
κ+.
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4 Constructibility
Definition 23. Let D denote the “first-order definable powerset” operation. Given a set M ,
a first-order definable subset X ⊆ M is a set of the form {a ∈ M | (M,∈) � φ(a, b⃗)}, where
φ is a formula in the first-order language of set theory and parameters b⃗ are in M . For any
set M , D(M) = {X ⊆ M | X is a first-order definable subset of M}. Then, L =

∪
α∈Ord Lα,

where

L0 = ∅
Lα+1 = D(Lα)

Lλ =
∪
α<λ

Lα, for limit λ

Definition 24. The constructible hierarchy L[x] relative to a set x is defined in the same way
as L, except at successor stages we consider Dx(M) = {X ⊆ M | X is definable over (M,∈
, x ∩M)}.
Fact 25. 1. L � ZF + AC + GCH.

2. L[x] has a global well-ordering that is definable from x.

3. L is the minimal inner model. If M is any inner model, then L ⊆ M .

4. In general, L[x] is the minimal inner model that can “see” x: if M is an inner model
and x ∩M ∈ M , then L[x] ⊆ M

Definition 26. Let x be a set.

L0(x) = trcl({x})
Lα+1(x) = D(Lα)(x)

Lλ(x) =
∪
α<λ

Lα, for limit λ

Fact 27. 1. L(x) � ZF

2. L(x) is the minimal inner model that contains x as member.
We can only be sure that L(x) � ZF. The most common example of this kind of con-

structible universe is L(R). For example, L(R) does not satisfy the axiom of choice after
adding ω1 Cohen reals.

The famous theorem of Scott shows that measurable cardinals refute V = L.
Theorem 28 (Scott). If there is a measurable cardinal, then V ̸= L.
Proof. Let κ be the least measurable cardinal, and let U be an ultrafilter on it. Let j :
V → M be the ultrapower embedding from U . If V = L, then this is really an elementary
embedding j : V → V . But the key point here is that expressions involving “j” can be
expressed in the language of set theory (just say “this and that sets are in U”).

So V � “κ is the least measurable cardinal”, now M � “j(κ) is the least measurable
cardinal”. But the assumption V = L implies M = V . So this contradicts the fact that
j(κ) > κ.
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5 Ordinal Definability
Definition 29. A set X is ordinal-definable iff there is a formula φ(x, y⃗) such that there are
ordinals α⃗, satisfying

X = {x | φ(x, α⃗)}

Remark 30. Formally, we will need to use the reflection theorem and say something is
ordinal-definable if there is some Vβ such that it is ordinal-definable (in the sense above) in
Vβ. But in practice it is easier to think of it in terms of the first “definition”.

Definition 31. A set X is hereditarily ordinal-definable, iff trcl({X}) is ordinal definable.
We write HOD for the class of hereditarily ordinal definable sets.

Definition 32. HODz is the class of sets hereditarily ordinal-definable from elements of z.
That is, X ∈ ODz iff there is some formula φ(x, y⃗, v⃗) such that there are ordinals α⃗ and
elements z⃗ from z, satisfying

X = {x | φ(x, α⃗, z⃗)}
And X ∈ HODz iff trcl({X}) ∈ ODz.

Fact 33. In general, if z is ordinal definable from z, then HODz � ZF.

Fact 34. There is a (parameter-free) definable well-ordering of the universe in HOD. In
fact, if M is an inner model with a definable well-ordering of the universe, then M ⊆ HOD.
So in some informal sense, HOD is the “largest” inner model that is nice.

Fact 35. We can define a relation D(x, y) = z in the language of set theory, such that
D(α, a) = b holds iff α codes a finite sequence of ordinals, the first one is a natural number
coding a formula, which, along with the rest of that sequence and x as parameters, defines
y.

One way of making things ordinal-definable is by coding into the continuum pattern.

Definition 36. Recall that if x is a set, then there is some ordinal δx and relation Ex ⊆ δ×δ
such that (tc({x}),∈) ∼= (δx, Ex) Let α, λ be ordinals. Let g : ON → ON × ON be the
inverse of Gödel’s pairing function. Define the set c(α, λ) ⊆ λ as follows: for all i ∈ λ,
i ∈ c(α, λ) ⇐⇒ 2ℵα+i+1 = ℵα+i+2. We say that x is coded into the continuum pattern at α
with length λ iff g′′c(α, λ) = Ex. That is, ∈� tc({x}) ∼= g′′c(α, λ).

We say that x is coded into the continuum pattern when there is some α, λ such that x
is coded into the continuum pattern at α with length λ.

Theorem 37. There is a forcing extension over L, so that in the extension, L ̸= HOD.

very sketchy proof. First, add a Cohen real to L and get L[c]. Then, use the homogeneity of
Cohen forcing to argue that c /∈ HOD. So in L[c], L = HOD.

But now, for i ∈ ω, use Easton forcing to make the continuum hypothesis true or false
at ℵi according to whether i ∈ c. That is, get a forcing extension L[c][G] where 2ℵi = ℵi+1

iff i ∈ c.
So now, in L[c][G], the Cohen real c is ordinal-definable by defining it to be the unique real

number whose characteristic function behaves the same way as the truth of the generalized
continuum hypothesis below ℵω.
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Sometimes HODz can have nice structure coming from V :

Theorem 38 (Solovay, assumes AC in V ). HODR � DC.

Let A be a set. Let R ⊆ HODR be a relation on some set A satisfying the assumption of
DC.

Proof. We inductively define the following function f : ω → HODR in V . Let f(0) be some
element of A.

Let α0 be the least ordinal such that there is a real number x with D(α0, x) = f(0), and
let x0 be such that D(α0, x0) = f(0).

Let αn+1 be the least ordinal α such that there is some real number x with (f(n), D(α, x)) ∈
R. Let xn+1 ∈ R witness that, and let f(n+ 1) := D(αn+1, xn+1).

We used AC to get the sequence of real numbers (xn | n ∈ ω), and we code it as a single
real r. Then The dependent choice function f is HODR using r as a parameter, basically
with the same definition above in the proof.

Finally, here’s a less useful definition of HOD, but this makes it more similar to L.

Theorem 39 ((AC)). HOD can be obtained by the following recursion, where D2 is second-
order definable powerset:

N0 = ∅
Nα+1 = D2(Lα)

Nλ =
∪
α<λ

Lα, for limit λ

A set is in HOD iff it is in one of the Nα.
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