
Notes for Nov. 22

Jason Chen

Convention. The spaces we are working with here all have the form of (at most countable)
products where each factor is either ω or ωω. Sometimes when things are really clear, we
might also consider factors other than ω or ωω.

A pointset is simply a subset of the spaces under discussion. A pointclass is a collection
of pointsets.

Following historical baggage, we tend to use f, g, x, y, α, β for variables ranging over ωω or
whatever else that gets called a “real number” by logicians. And m,n, j, k, i are for variables
ranging over natural numbers. Although it occurs rarely1, when the context is clear, f, g
might also range over functions or maps, and α, β over ordinals. (You’re welcome, and no, I
am not sorry.)

1 Normal forms of Σ1
1 via Luzin’s arithemtical example

Definition 1. A pointset A is in the pointclass Σ1
1 (for short, A is Σ1

1) if it can be defined
by A(x)⇔ ∃y∀nR(x, y, n), where R is a computable relation.

Example 2 (Luzin, 1927). Consider the space (ω r {0})ω. This is the space of sequences
of positive integers. Define a subset A of the space as follows:

A(x)⇔ ∃n0 < n1 < n2 < ...x(ni) divides x(ni+1)

In other words, x ∈ A iff there is some increasing y ∈ (ω r {0})ω such that for all i ∈ ω, we
have x(y(i)) divides x(y(i+1)). This is Σ1

1, because the relation “y(m) > y(m+1)∧x(y(n)) |
x(y(n+ 1))”, with free variables (x, y,m, n), is computable.

The example of the set A is meant to illustrate how we obtain normal forms for Σ1
1 sets.

Intuitively, how would you verify membership in A?

1by this I mean the context is rarely clear

1

Figure 1: Luzin, Sur les ensembles analytiques

Well, A consists of sequences where you can find an infinite subsequence of progressively
divisible integers (it’s just slick way of saying each intger divides the next). Given a sequence
f of positive integers, imagine we are rolling out f in front of us, examining longer and
longer initial segments, and finding whether these finite segments have progressively divisible
subsequences.

This amounts to running some kind of program, in pseudocode (notice “places to be
checked” has the same length as the segment; this is just making it pretty so it’s easier to
define the tree next):

Algorithm 1 Finding progressive divisibility subsequence

Input: segment to be checked: 〈n0, ..., ni〉, places to check: 〈m0, ...mi〉
j ← 0
while j ≤ i do

if m0, ...,mj is not increasing then
halt saying no

end if
if mj is greater than i then

halt, do nothing . This is for when we inquire about a place beyond our input
else if nm0 | nm1 , nm1 | nm2 , ..., nmj−1

| nmj
then

j ← j + 1, go back to the start of the while loop
else halt saying no
end if
j ← j + 1

end while
Halt saying yes

A casual examination of the program above shows that it can have 3 possible outcomes:

1. it halts saying nothing, in which case we’ve asked for a place beyond the length of the
input, resulting in undefined.

2

2. it halts saying yes, in which case we succeed in finding a finite subsequence that’s
progressively divisible.

3. it halts saying no. This is either because the “places to check” is not increasing (we’re
not checking progressively), or because no such finite subsequence can be found

If you think about it, the only way a sequence f fails to get into A is if it has no
infinite subsequence that’s progressively divisible. In other words, every attempt to pick out
progressively divisible subsequences will be rejected by the program above in finite time.

So if we eliminate these losers, we end up getting a tree coding the verification of mem-
bership in A.

Proposition 3. There is a tree T on ω × ω satisfying: for all f ∈ (ω r {0})ω, f ∈ A if and
only if there is some g ∈ (ω r {0})ω such that for all n, (f � n, g � n) ∈ T

Remark. In descriptive set theory, a tree on ω is a subset of finite sequences of ω that’s
closed under initial segments. Simiarly a tree T on ω×ω is a subset of ω<ω×ω<ω such that
if (s, t) ∈ T , then length(s) = length(t) and if s′ is an initial segment of s and t′ is an initial
segment of t′ with the same length as s′, then (s′, t′) ∈ T .

Proof. T will be the tree that has “eliminated the losers”. That is,

T := {(s, t) | the program running Algorithm 1 does not halt saying no on input (s, t)}

If f ∈ A, then fix an increasing g picking out an infinite progressively divisible subse-
quence of f . Claim: for each n, the pair (f � n, g � n) will not be rejected by the program.
This is because the only way for the program to halt saying no on (f � n, g � n) is if
f(g(0)), f(g(1)), f(g(2)), ...f(g(n− 1)) is not a progressively divisible sequence, or if g � n is
not increasing. Either way, this will contradict the choice of g.

Conversely, let g ∈ (ω r {0})ω be such that for all n, (f � n, g � n) ∈ T . First of all, it’s
obvious that g must be increasing. Second, observe the following: whatever g(k) is, there
will be a run of the program when n gets large enough so that f � n has the g(k)th place. In
other words, previously undefined behavior will eventually become defined on large enough
n.

Therefore, the assumption that the program running Algorithm 1 does not halt saying
no on input (f � n, g � n) for each n can only mean that 〈f(g(k)) : k < n〉 is a progressively
divisible subsequence for each n, but that means (since f, g are fixed) that 〈f(g(k)) : k < ω〉
is such a subsequence of f .

Remark. In fact, Luzin’s set A is an example of what’s called a complete-Σ1
1 set. It’s like

NP-complete, in that every Σ1
1 set can be continuously (in fact, computably) reduced to it.

But we won’t say more about that here.

In the proof above, we only used the fact that “y(m) > y(m+ 1)∧x(y(n)) | x(y(n+ 1))”
is a computable relation. Abstracting away from talks of divisibility and finding sequences,
this proof provides the following normal form for Σ1

1 sets.

Theorem 4. Let A be a pointset, say A is a subset of ωω for simplicity. The following are
equivalent

3

1. A is Σ1
1.

2. There is some computable tree on ω × ω such that A = p[T]. That is, f ∈ A if and
only if there is some g ∈ ωω such that for all n, (f � n, g � n) ∈ T .

3. There is a computable assignment f 7→ Tf from reals to trees, such that f ∈ A if and
only if Tf has an infinite branch.

Proof Sketch. 1⇒ 2: for this, modify the definition of T in the last proof. Define instead

T := {(s, t) | length(s) = length(t) ∧ ∀n < length(t)

the program deciding R(x, y, n) has not halted rejecting (s, t) in length(t) many steps}

2⇒ 3: Given a computable tree T on ω×ω, the assignment mapping y to its projection
Ty (Ty is a tree on ω) is computable. To compute it: given any finite initial segment of
y, search through T in the second coordinate to confirm or deny whether it’s the t of any
(s, t) ∈ T .

3⇒ 1: say the assignment is computed by the eth Turing machine. Then saying “A(f)⇔
∃y the tree computed by the eth Turing machine on input f has a path that can be traced
by y (i.e., ∀n y � n ∈ Tf)” puts A in Σ1

1 form.

The following facts are also quite useful. Given what we’ve seen, proving them is just a
matter of using de Morgan’s law, taking complements, and basic propositional logic.

Definition 5. A pointset is Π1
1 iff it’s the complement of a Σ1

1 set.

Theorem 6. Let A be a pointset, say A is a subset of ωω for simplicity. The following are
equivalent

1. A is Π1
1.

2. There is some computable tree on ω × ω satisfying: for all f , f ∈ A if and only if for
all g ∈ ωω, there is some n with (f � n, g � n) /∈ T .

3. There is a computable assignment f 7→ Tf from reals to trees, such that f ∈ A if and
only if Tf has no infinite branch (we say Tf is well-founded in this case).

The preceding theorem provides a useful object: a Π1
1-complete set.

Definition 7. The set WF is the subset of ωω that are codes of well-founded relations.
This means that the elements of WF are all f : ω → {0, 1} such that (for a fixed-in-advance
computable encoding/pairing function p : ω ↔ ω×ω) the subset of natural numbers having
characteristic function f encodes a well-founded relation on the natural numbers.

Theorem 8. For every Π1
1 set A ⊆ X , there is a computable function F : X → ωω such

that A = F−1[WF]. (This is like NP-complete with polynomial-time functions).

Proof Sketch. Use the computable assignment f 7→ Tf above. So f ∈ A iff Tf is well-
founded. Let F (f) = the unique element g in ωω, such that (where p is the computable

pairing function on naturals) g(p−1(m,n)) =

{
1 if tm, tn ∈ Tf ∧ tm ≺ tn

0 otherwise

Here, {tm | m ∈ ω} is a computable encoding of ω<ω(i.e., nodes on a tree).

4

2 Norms and Prewellorderings

Recall:

Definition 9. Let Γ be a pointclass. ϕ : A→ κ a norm on some pointset A. We say ϕ is a
Γ-norm iff there are relations P (x, y) in Γ and Q(x, y) in Γ̆ such that for all y ∈ A and for
all x, the following are equivalent:

1. x ∈ A and ϕ(x) ≤ ϕ(y)

2. P (x, y)

3. Q(x, y)

In many texts, P (x, y) is written as ≤ϕ
Γ instead and Q(x, y) as ≤ϕ

Γ̆
. Since in actual arguments

these symbols are introduced via existential instantiation, whatever symbols we choose use
is just a matter of stylistics.

Definition 10. Given a pointclass Γ, Prewellordering(Γ) is the statement “every Γ-set A
has a Γ-norm”.

Definition 11. Given pairs of sets (A,B), (A∗, B∗), we say (A∗, B∗) reduces (A,B) iff A∗ ∩
B∗ = ∅ ∧ A∗ ∪B∗ = A ∪B.

We say a pointclass Γ has the reduction property iff every pair of Γ-sets can be reduced
by a pair of Γ-sets.

At the moment we are interested in getting the reduction property from the prewellorder-
ing property. But let’s first see a prototypical case:

Theorem 12. The class of recursively enumerable subsets of ω has the reduction property.

Proof. We appeal to the Church-Turing thesis freely. Let A,B be recursively enumerable.
We now describe an enumeration procedure for sets A∗, B∗.

Begin by enumerating A and B on the side alternately (that is, run a separate program,
such that, on the even steps of that computation, enumerate A, on the odd steps B). On
even steps, if we find an element of A, and this element has not been found in B yet, put it
in A∗; if this element has been found in B, then ignore and move on.

Similarly, on an odd step that an element of B is found which is not yet found to be in
A, then put it in B∗; if this element has been found in A, then ignore and move on. Don’t
put anything else in A∗ or B∗.

CLaim: (A∗, B∗) reduces (A,B). Proof: obviously, A∗ ⊆ A and B∗ ⊆ B and A∗∩B∗ = ∅.
To see A∪B ⊆ A∗ ∪B∗, we notice that the separate program we run must enumerate every
element of A ∪B since it alternates between A and B and both are recursively enumerable.
Every first encounter with an element in A or B, we will put it either A∗ or B∗ depending
on where we first find it.

The preceding proof is not hard. The key point is we have some enumeration procedure
of the sets in question and the ability to look back on such a procedure to check if anything
has been enumerated up to this moment. Norms and prewellorderings are the abstract tools
for that.

5

Theorem 13. For any pointclass Γ, if Prewellordering(Γ), then Γ has the reduction property.

Lemma 14. Let Γ be an adequate pointclass and let C be a Γ set. If ϕ is a Γ-norm on C,
then the following relations are also in Γ:

x ≤∗ϕ y ⇔df x ∈ C ∧ (y ∈ C → ϕ(x) ≤ ϕ(y))

x <∗ϕ y ⇔df x ∈ C ∧ (y ∈ C → ϕ(x) < ϕ(y))

Proof of Lemma. Simply observe that

x ≤∗ϕ y ↔ x ∈ C ∧ (x ≤ϕ
Γ y ∨ y 6≤

ϕ

Γ̆
x)

x <∗ϕ y ↔ x ∈ C ∧ y 6≤ϕ

Γ̆
x

Proof of Theorem. By the lemma, the relations ≤∗ϕ and <∗ϕ are also in Γ. Now suppose
A,B ⊆ X are Γ sets in the space X . We want to find A∗, B∗ that reduce them. The idea is
to abstractly simulate the computer programs above, using the norm and these two relations.

Define a pointset C ⊆ X × ω by (this is like the alternating enumeration)

C(x, n)⇔ ((A(x) ∧ n = 0) ∨ (B(x) ∧ n = 1))

By the closure properties of adequate Γ (n = 0, n = 1 are both recursive), the set C thus
defined is also a Γ set. So by Prewellordering(Γ), it has a Γ-norm ϕ.

Define A∗, B∗ as

A∗(x)⇔ (x, 0) ≤∗ϕ (x, 1)

B∗(x)⇔ (x, 1) <∗ϕ (x, 0)

(This is like checking if an element is first found in A or in B)
By the lemma, A∗ and B∗ are Γ sets. It is obvious from the definitions that A∗ ⊆

A,B∗ ⊆ B. And A∗ ∩ B∗ = ∅ because for those (x, n) ∈ C, the conditions (x, 0) ≤∗ϕ (x, 1)
and (x, 1) <∗ϕ (x, 0) are mutually exclusive (this is just a definition chase).

To see A∪B ⊆ A∗ ∪B∗: let’s say x ∈ A, on the one hand, if x /∈ B, then (x, 1) /∈ C, and
hence (x, 0) ≤∗ϕ (x, 1) holds vacuously (expand the full definition in the statement of Lemma
14 to see this), and so A∗(x) holds. On the other hand, if x ∈ B, then both (x, 0) and (x, 1)
are in C. Now we can compare the ranking between (x, 0) and (x, 1) given by the Γ-norm
ϕ on C. If (x, 1) <∗ϕ (x, 0) then x falls into B∗, and if (x, 0) ≤∗ϕ (x, 1), then x falls into A∗

instead.
Exchanging A and B in the argument above finishes the proof.

Theorem 15. If Γ is adequate, then Prewellordering(Γ) implies Prewellordering(Γ˜).

Proof. Say A is a Γ˜ set in the space X , this means that there is some Γ set B in the space
X × ωω and α0 ∈ ωω such that A = {α | (α, α0) ∈ B}. By Prewellordering(Γ), fix a Γ-norm
ϕ̄(x, y) on B, and define, for α ∈ A, ψ(α) = ϕ̄(α, α0).

It might be the case that ψ skips over some ordinals (so it’s not really onto a ordinal). But
that’s okay, we can always define a surjective ϕ : A→ κ by setting ϕ(α) = otp{ψ(β) | β < α}.
Finally, check that ϕ inherits all the relevant properties from ϕ̄, making it a Γ˜-norm (this
step involves writing strings of iffs).

6

	Normal forms of 11 via Luzin's arithemtical example
	Norms and Prewellorderings

