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1 Prelims

Definition 1.1. A linear ordering < on a set P is a well-ordering if every nonempty subset of P has
a<-least element. A set x is transitive iff y ∈ x implies y ⊆ x. Or equivalently, z ∈ y∧y ∈ x⇒ z ∈ x

Definition 1.2. An ordinal is a transitive set that’s well-ordered by ∈. When context is clear, we
may write < for ∈.

Fact 1.3.

1. for each ordinal α, α = {β | β < α}.

2. 0 = ∅ is an ordinal.

3. if α is an ordinal, then α ∪ {α} is an ordinal; in particular, α ∪ {α} = inf{β | β > α} .

4. if X is a set of ordinal, then
⋃
X is an ordinal; in particular,

⋃
X = supX.

Example. 2 = {∅, {∅}} = {0, 1}; ω = {0, 1, 2, 3, ...}; ω + ω = {0, 1, 2, 3, ..., ω + 1, ω + 2, ω + 3, ...}

Definition 1.4. Given two sets A,B we write |A| = |B| iff there is a bijection between them;
|A| ≤ |B| iff there’s an injection f : A→ B. |A| < |B| iff |A| ≤ |B| and |A| 6= |B|.

Theorem 1.5. (Cantor) |X| < |P(X)| for all X.

Definition 1.6.
(i) An ordinal α is called a cardinal if |α| 6= |β| for all β < α. In other words, we identify cardinals
with initial ordinals.
(ii) if W is a well-ordered set, then there exists an ordinal α such that |W | = |α|. Let |W | denote
the least α such that |W | = |α|.

Theorem 1.7. (Zermelo)(AC) Every set can be well-ordered.

Theorem 1.8. (Replacement) Every well-oredered set is isomorphic to a (unique) ordinal.

Fact 1.9.
(i) for every α there is a cardinal number greater than α.
(ii) if X is a set of cardinals, then supX is a cardinal.

If κ is a cardinal, we let κ+ denote the least cardinal greater than κ.

Definition 1.10. (Aleph numbers)
ℵ0 = ω
ℵα+1 = ℵ+α
ℵλ = sup{ℵβ | β < α}, for limit ordinal λ.
(A lot of sources write ωα and ℵα interchangeably.)
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Definition 1.11. κ is a successor cardinal iff there is some γ such that κ = λ+. Otherwise κ is a
limit cardinal.

Remark. Limit cardinals are kind of large. They cannot be reached by cardinal successors from
below.

Definition 1.12. If α, γ are limit ordinals, then a function f : γ → α is cofinal if it’s order-
preserving and its range is unbounded in α, i.e., for each x ∈ α, there is some y ∈ γ such that
x < f(y). The cofinality of α, cf(α) is the least γ such that there is a cofinal function f : γ → α.

Example. cf(ω + ω) = ω, as witnessed by f : n 7→ ω + n. cf(ℵω) = ω, witnessed by f : n 7→ ℵn.

Proposition 1.13. Let κ be an infinite cardinal. Then cf(κ) is the least α such that there are
cardinals κξ < κ, ξ < α such that κ =

∑
ξ<α κξ = |

⋃
ξ<κ(κξ × {ξ})| (the cardinality of the disjoint

union of the κξ’s.)

Remark. this means that cofinality is some measure of largeness: it measures how many pieces of
sets smaller than κ is needed to put together a set of size κ.

Proof. Let λ = cf(κ) and α as in the above. We want to show that λ = α.

Let (γξ | ξ < λ) be cofinal in κ. This sequence is well defined because there is a function f : λ→ κ
that’s cofinal. For each ξ < λ, γξ < κ (this is because κ is a cardinal, see definition 1.6.(i)). By
definition of cofinality, κ =

⋃
ξ<λ γξ. But

⋃
ξ<λ γξ =

∑
ξ<λ |γξ| (this equality is not entirely trivial.

Proof in appendix). Hence α ≤ λ.

Now suppose for contradcition that α < λ. Let (κξ)ξ<α be such that κ =
∑

ξ<κ κξ. Since λ is the
least ordinal to have a cofinal sequence in κ, we know that (κξ)ξ<α is not cofinal in α. In other words,
this sequence is bounded by some γ < κ. But

∑
ξ<α κξ ≤

∑
ξ<α |γ| = |α| × |γ| < κ. Contradiction.

(The last inequality follows from a general fact about cardinal multiplication: κ × λ = max{κ, λ}
if at least one of κ, λ is infinite and neither is zero).

Remark. So regular cardinals are kind of large. They cannot be put together by smaller pieces of
smaller sets.

2 Inaccessibility

Definition 2.1. A cardinal κ is a strong limit iff for all λ < κ, 2λ = |P(λ)| < κ.

Remark. so strong limits are also kind of large, they cannot be reached from below by taking power
sets. Also, this definition might not make sense without choice. Powersets are not guaranteed to be
well-oredered. See Inaccessible Cardinals without the Axiom of Choice by Blass, Dimitriou, Löwe

Definition 2.2.
(i) a weakly-inaccessible cardinal is an uncountable regular limit cardinal;
(ii) a strongly-inaccessible cardinal is an uncountable regular strong limit cardinal.

Proposition 2.3. Let κ be weakly inaccessible, then
(i) κ = ℵκ
(ii) A = {α ∈ κ | α = ℵα} is closed unbounded in κ.
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Proof.
(i) Let κ = ℵλ for some limit ordinal λ. We show that κ = λ.

κ = cf(κ) (by regularity)

= cf(ℵλ) (by definition)

= cf(λ) (κ is a limit cardinal)

≤ λ (implied by definition of cofinality)

≤ ℵλ = κ (the last inequality can be proven by induction)

(ii) Let (αi | i < λ), λ limit, be a strictly increasing sequence of elements in A that’s not cofinal
in κ. To show that A is closed, it suffices to show that the sup of this sequence is in A. Let
αλ =

⋃
i<λ αi. We want to show that αλ = ℵαλ .

Suppose for contradiction that αλ < ℵαλ . Then |αλ| = |ℵγ | for some γ < αλ. But since αλ is the
least upper bound of the αi’s, there must be some αk in the sequence that’s above γ (if not, then
γ would be an upper bound for the αi’s, contradicting the minimality of αλ). But for this αk, we
have αλ ≤ ℵαk = αk < αλ, a contradiction.

To show that A is unbounded, let β ∈ κ. We want to find some α ∈ A that’s above β. First we
note that κ is an ℵ fixed-point. So β ≤ ℵβ < κ (suppose not, then ℵβ ≥ ℵκ = κ, which implies
that β ≥ κ, contradiction). We define the following ω-sequence:

β0 = β

βn+1 = ℵβn
βω =

⋃
k<ω

βk

By mathematical induction, we can show that for each n, βn < κ using the same argument as in the
above parenthesis. And since κ is regular, this ω-sequence cannot be unbounded in κ. So βω < κ.

Now we show βω ∈ A. That is, βω = ℵβω . Suppose for contradiction that βω < ℵβω . Then there is
some n such that βω ≤ ℵβn < ℵβn+5 = βn+6 < βω. Contradiction.

Proposition 2.4. Let κ be strongly inaccessible, then S = {γ < κ | γ is strong limit} is club in κ.
(the proof really closely mirrors 2.3)

Proof. Let κ and S be as in the statement. We first show that S is closed.

Let (αi | i < λ), λ a limit ordinal, be a strictly increasing sequence of elements of S that is not
cofinal in κ. It suffices to show that the sup of this sequence is in κ. Let α = sup(αi | i < λ).
Clearly, α is a limit cardinal. Now let β < α, we want to show that 2β < α. Since α is the limit of
a sequence of strong limit cardinals, there must be some strong limit cardinal αk in the sequence
such that αk > β (otherwise β would be an upper bound for the α′

is). But αk is a strong limit, so
2β < αk < α. This shows that S is closed in κ. Note that this show, more generally, that a limit
of strong limit cardinals is also a strong limit cardinal, a fact that we’ll use next.

Now we show that S is unbounded. Let β ∈ κ. It suffices to show that there is some α ∈ S such
that β < α. To find this α, we define the following ω-sequence of i numbers (“Beth”):
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i0(β) = 2β

in+1(β) = 2in(β)

iω(β) =
⋃
k<ω

ik = sup{2ℵ0 , 22
ℵ0
, 22

2ℵ0

, ...}

That iω(β) < κ follows from κ being a strong limit and has uncountable cofinality. That iω(β) ∈ S
follows from it being a limit of strong limits (see above). This shows that S is unbounded.

Corollary 2.5. If κ is the least strongly inaccessible, then the set of all singular strong limits below
it is club. This follows from the observation that all strong limits below κ are singular.

Definition 2.6. The von-Neumann universe is defined by recursion:

V0 = ∅
V(α+1) = P(Vα)

Vλ =
⋃
β<λ

Vβ λ a limit ordinal

Fact. The Vα’s are transitive.

Proposition 2.7. Let κ be strongly inaccessible, then Vκ � ZFC.

The proof of the proposition is broken down into a few lemmas:

Lemma. Extensionality and Foundation hold in any transitive set.

Proof. Let M be transitive.
-Extensionality: suppose x 6= y for some x, y ∈M . Then axiom of extensionality in V implies that
there is some z such that z is in one of x, y but not the other. Since M is transitive, we conclude
that z is in M too.
-Foundation: given transitive M , then Foundation in V implies that there is x ∈ M such that
x ∩M = ∅. Because M is transitive, x ⊆M . Hence x ∩M ⊆ x, we conclude that x = ∅.

Lemma. If α is a limit ordinal, then Extensionality, Foundation, Infinity, Separation, Pairing,
Union, Powerset, and Choice all hold in Vα.

Proof. Infinity: follows from the fact that ω ∈ Vµ for all µ > ω.

Separation: let Y ⊆ X ∈ Vα. Because X ∈ Vα, we know that there is some β < α such that
X ⊆ Vβ. So Y ⊆ X ⊆ Vβ; hence Y ∈ Vβ+1 ⊆ Vα.

Union: let A ∈ Vα. It follows that A ⊆ Vβ for some β < α, and hence
⋃
A ⊆ Vγ for some γ < α.

So
⋃
A ∈ Vγ+1 ⊆ Vα.

Pairing and Powerset: Given that α is limit, if x, y ∈ Vβ for some β < α then {x, y} ⊆ Vβ, and so
{x, y} ∈ Vβ+1. Similarly for Powerset.

Choice: we use the equivalent form: for all X there is a function f : P(X r {∅}) → X such that
f(Y ) ∈ Y for all Y ∈ X r {∅}. Given X ∈ Vα, it follows that X ∈ Vβ ⊂ Vα, so P(X) ∈ Vβ+1.
A function from P(X r {∅}) to X is an element of P(P(X r {∅}) × X). Under the Kuratowski
definition of ordered pairs, each choice function is an element of PPP(P(X r {∅})∪X). So if such
a choice function exists in V , then it also exists in Vβ+20 ⊂ Vα, for instance.
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Lemma. If κ is strongly inaccessible and β < κ, then |Vβ| < κ.

Proof. This can be proven by induction: the successor case follows from definition. For the limit
case, suppose |Vα| < κ for all α < β. Then |Vβ| = |

⋃
α<β Vα| ≤ β × κ = κ. Now suppose for

contradiction that |Vβ| = κ. But note that |Vβ| = sup|Vα|α<β (follows from κ × κ = κ). Then
f : β → κ defined by f(α) = |Vα| is cofinal in κ, which is a contradiction.

Lemma. If κ is strongly inaccessible, then Vκ satisfies Replacement.

Proof. Let A ∈ Vκ and F : A → Vκ be a definable function. Since κ is a limit, there is β < κ
such that A ∈ Vβ. Since the Vα’s are transitive, A ⊆ Vβ and |A| ≤ |Vβ| < κ, by lemma above. So
{rank(x) | x ∈ F“A} will be a set of ordinals below κ, but κ is regular, so this set must bounded
by some ordinal below κ. This means that F“A will have rank below κ, and so it’s a member of
Vκ. This completes the proof of 2.7

Corollary 2.8. If ZFC is consistent, then ZFC cannot prove the existence of a strongly inacces-
sible cardinal. (This can also be proven without appeal to the second incompleteness theorem, by
noting that strong inaccessibility is absolute between V and Vκ)

Proposition 2.9. Let ZFC2 denote the axioms of ZFC with Replacement (and Separation) re-
placed by a single axiom with second order quantifier. Then Vκ � ZFC2 iff κ is strongly inaccessible.

Proof.
(⇐) same as above

(⇒) Vκ satisfies Infinity, so κ is uncountable.

κ is regular: suppose not, then there is some function f : α → κ with cofinal image, α < κ. But
this function will be a subset of Vκ. But then by second order Replacement, f“α ∈ Vκ. By Union,
sup(f“α) = κ ∈ Vκ, contradiction.

κ is strong limit: suppose not, then there is some λ < κ such that 2λ ≥ κ. P(λ) ∈ Vκ since Vκ
satisfies Powerset. Then there is a surjection H : P(λ) → κ; by second order Replacement again,
we have H“P(λ) = κ ∈ Vκ.

Corollary 2.10. There is an strongly inaccessible cardinal iff there is a model of ZFC2 of the
form (M,E,P(M)).

Fact.(Zermelo’s Quasi-Categoricity) If the two structures (M,E,P(M)), (M ′, E′,P(M)′) are mod-
els of ZFC2, then one of them will be isomorphic to a substructure of the other.
Fact. There is a model of ZFC2 of the form (M,E,P(M)) such that if it satisfies CH, then all
models of ZFC2 in this form will satisfy CH. (Because CH is a statement about Vω+3). Kreisel
used this fact to argue that CH has a definite truth value. See Informal Rigour and Completeness
Proofs.

Weak inaccessibility can also be generalized.

Definition 2.11.
(i) κ is 0-weakly inacecssible iff κ is regular;
(ii) κ is α+ 1-weakly inaccessible iff κ is a regular limit of α-weakly inaccessible cardinals;
(iii) κ is δ-weakly inacccessible iff κ is α-weakly inaccessible for every α < δ (δ > 0 is a limit
ordinal).
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Remark. Let Reg be the class of regular cardinals and Λ the operation defined on X ⊆ On by:
Λ(X) = {α ∈ X | |X ∩ α| = α}. Then the α-weakly inacccessible cardinals are just the members
of Λα(Reg), where:

Λ0(Reg) = Reg

Λα+1(Reg) = Λ(Λα(Reg))

Λµ =
⋂
β<µ

Λβ(Reg)

Proposition 2.12. If κ is the αth strongly inaccessible, where α < κ, then the set of all regular
cardinals below κ is nonstationary.

Proof. Let (κi | i < α) enumerate the inaccessibles below κ. We see that this is sequence is bounded
by sup(κi | i < α) < κ. Take the set of all singular strong limit cardinals above this sup and less
than κ, and proceed as the case of the least inaccessible.

3 Mahlo

Definition 3.1.
κ is weakly Mahlo iff {ρ < κ | ρ is regular } is stationary in κ.

κ is strongly Mahlo iff {α < κ | α is strongly inaccessible} is stationary in κ.

Remark. Given that club sets are exactly the range of normal functions, an equivalent definition
of weakly/strongly is that every normal function on κ has regular/strongly inaccesible fixed points.

Proposition 3.2.
(i) Weakly Mahlo cardinals are weakly inaccessible.
(ii) Strongly Mahlo cardinals are strongly inaccessible.

Proof.
Uncountability is straightforward in both cases.

Suppose a weakly Mahlo κ is not regular, and let cf(κ) = γ < κ. Let (µi | i < γ) be cofinal
in κ. WLOG, we may assume that µ0 = γ + 1. We look at the set C of limit points of this
sequence other than κ: C must be club in κ. Hence C must contain a regular cardinal µ. But
µ = cf(µ) < cf(κ) < µ < κ. This argument also shows that strongly Mahlo cardinals are regular.

Let κ be weakly Mahlo. We now show that κ is a limit cardinal. Suppose not, then κ = δ+ for
some δ. Then the set C = {x ∈ κ | ∃α < κ x = δ + α} is club in κ, but it contains no regular
cardinal. Contradiction.
Now suppose κ is stronly Mahlo, and suppose for contradiction that κ is not strong limit. Then
2δ ≥ κ for some δ < κ. We consider again the set C = {x ∈ κ | ∃α < κ x = δ + α}. This set is
club in κ. This set cannot have strong limit cardinals, because all of its members are between δ
and 2δ.

Remark. It follows from this and Prop 2.12 that if κ is weakly Mahlo, then κ is the κth weakly
inacceesible. The converse might not hold: the least κ such that κ is the κth inaccessible is not
Mahlo.

Proposition 3.3. κ is κ-weakly inaccessible.
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Proof. Clearly, κ is a limit ordinal. So it suffices to show that for every α < κ, κ is α-weakly
inaccessible. We show this by induction on α.

Let R = {ρ < κ | ρ is regular}. We define the following sequence of club sets of κ:

C0 = κ

Cα+1 = {x ∈ κ | κ 6= x is a limit point of Cα ∩R}

Cλ =
⋂
α<λ

Cα, for limit λ

Cα+1 is club because Cα ∩ R is stationary (hence unbounded in κ), and the limit points of an
unbounded set is club. Hence by κ’s Mahloness, Cα+1 contains a regular cardinal, i.e., a α + 1-
weakly inaccessible. This shows that for all successor α < κ, κ is α-inaccessible. The limit case is
trivial.

We may generalize Mahloness in a similar way.

Definition 3.4. κ is 0-weakly Mahlo iff κ is regular
κ is α+ 1-weakly Mahlo iff {ξ < κ | ξ is α-weakly Mahlo} is stationary in κ
κ is δ-weakly Mahlo iff κ is α-weakly Mahlo for all α < δ, for limit δ.

Analogous to the Λ operation above, we can also define the Mahlo operation M(X) to be:
M(X) = {α ∈ X | X ∩α is stationary in α}. Then α-weakly Mahlo cardinals are just the members
of Mα(Reg).
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A Appendix

Claim A.1. (AC) successor cardinals are regular.

Proof. Let κ+ be a successor cardinal and suppose for contradiction that cf(κ) = λ < κ. Fix a
cofinal sequence (κξ | ξ < λ), so κ+ =

⋃
ξ<λ κξ. We show that |

⋃
ξ<λ κξ| ≤ κ < κ+ and thus arrive

at a contradiction.

Since κ+ is a cardinal, we know that κξ ≤ κ for all ξ < λ. So for each ξ ∈ λ, we can fix a bijection fξ
between κxi and some µ ∈ κ (since there are many such bijections, here we use choice to pick one).
We define a surjection f from κ×κ to

⋃
ξ<λ κξ by setting f(α, β) = fα(β). Clearly, this function is

surjective. Since κ×κ is well-orderable (even without choice), there is an injection f ′ from
⋃
ξ<λ κξ

to κ × κ (for each x ∈
⋃
ξ<λ κξ, let f ′(x) be the least (a, b) ∈ κ × κ such that f(a, b) = x). This

shows that κ =
⋃
ξ<λ κξ ≤ |κ× κ| = κ < κ+. Which is a contradiction.

Claim A.2. Let κ be an infinite cardinal, and let (γξ | ξ < λ) be cofinal in κ.
Then κ =

⋃
ξ<λ γξ =

∑
ξ<λ |γξ|.

To prove this claim, we need the following:
Lemma. If λ is an infinite cardinal and κi > 0 for all i < λ, then∑

i<λ

κi = λ× supi<λκi

Proof. let κ = supi<λκi and σ =
∑

i<λ κi. We want to show that σ ≤ λ× κ and λ× κ ≤ σ.

(σ ≤ λ× κ) κi ≤ κ, and so σ ≤
∑

i<λ κ ≤ λ× κ.

(λ × κ ≤ σ) note that λ =
∑

i<λ 1 ≤ σ. Also note that κi ≤ σ for all i < λ. Putting these two
together, we have σ ≥ supi<λκi = κ. And so σ ≥ λ× κ = max{λ, κ}.

So to show our claim, it suffices to show that λ× supξ<λ|γξ| = κ. We now prove this.

Proof. We discuss two cases, (i) κ is a successor cardinal; (ii)κ is a limit cardinal.

(i) Since κ is a successor cardinal, κ is regular. Then by Claim A.1, λ = cf(κ) = κ. Hence
λ× supξ<λ|γξ| = λ = κ.

(ii) if κ is a limit cardinal, then for all µ < κ, we have µ+ < κ. Since (γξ | ξ < λ) is unbounded in
κ, it follows that (|γξ|)ξ<λ is unbounded in κ also (because any bound to this sequence would also
be a bound to the former sequence). Hence supξ<λ|γξ| = κ and so λ× supξ<λ|γξ| = κ

8


	Prelims
	Inaccessibility
	Mahlo
	Appendix

