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The purpose of this small note is to present a point of view, according to which the
largest Π1

1 thin set is a kind of sharp. Nothing in here is new or original.

1 Countable objects transcending L

Recall the recurring motif between large cardinals and constructibility: large cardinals defeat
constructible sets as a correct approximation of the true mathematical universe. The canoni-
cal example of this is Silver’s work on sharps, where large cardinals makes L’s approximation
of V laughable:

Theorem 1. Assume there is a measurable cardinal, then

1. For every uncountable cardinal κ < λ, Lκ is an elementary substructure of Lλ. In
particular, Lκ ≺ L.

2. There is a unique closed unbounded proper class I of ordinals, such that for every
uncountable cardinal κ the following hold:

(a) |I ∩ κ| = κ

(b) I ∩ κ is a set of indiscernibles for (Lκ,∈)

(c) every a ∈ Lκ is definable in (Lκ,∈) from a finite increasing sequence of elements
in I ∩ κ

A consequence of this is that L thinks every α ∈ I is an inaccessible cardinal. So there
are many countable ordinals in V that are mistaken by L to be large cardinals.

Another failure of constructibility is that there are only countably many reals in L. This
can be proved as follows:

Corollary 2. P(ω) ∩ L is countable

Proof. P(ω)∩L is definable in L as “the unique x whose members are exactly all the subsets
of the set of natural numbers”. By elementarity, this set is already definable in L(ω1)V . This
entails that P(ω) ∩ L ∈ Lβ for some β < (ω1)

V . To conclude that it is countable, we note
that |Lβ| = |β| < (ω1)

V .

The feature of the kind of transcendence in Theorem 1 is that it’s witnessed by a global
object, namely elementary chain Lκ ≺ Lλ ≺ ... and the club proper class I ⊆ On.

It turns out that this transcendence is actually witnessed by a countable, simply definable
object.
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Definition 3. Let 0# denote that set of Gödel numbers of formulas ϕ(v1, ..., vm) such that
Lℵω � ϕ(ℵ1, ...,ℵm)

By the works of Silver and Solovay, 0# is shown to have a simple definition in second
order arithmetic: it is a Π1

2 singleton. That is, there is a Π1
2 formula Z(x) such that 0# is

the unique object satisfying it.
Moreover, 0# has a canonical/universal property: every well-founded remarkable Ehrenfeucht-

Mostowski set of formulas will be identical to 0# (for definitions, see chapter 17 of Jech’s
Set Theory or §9 in Kanamori’s The Higher Infinite).

Let us show Corollary 2. using this countable object.

Another proof of countability of consturctible reals. We show that every real in L is com-
putable from 0#. Since there are only countably many programs, there can only be countably
many such reals.

Now let x ∈ P(ω) ∩ L. Observe that since GCH holds in L, x ∈ L(ω1)L ⊆ L(ω1)V . By 2(c)
of Theorem 1., there is some formula ϕx and some increasing sequence i1, ..., im of elements
in I ∩ L(ω1)V , such that

n ∈ x⇔ (L(ω1)V ,∈) � ϕx(n̄, i1, ..., im)

(where we write n̄ for the numeral for n; alternatively one could also substitute n with the
usual formula defining it.)

But since L(ω1)V is an elementary substructre of Lℵω , and since the elements of I are all
indiscernibles, we have

n ∈ x⇔ (Lℵω ,∈) � ϕx(n̄,ℵ1, ...,ℵm)

So to compute whether n ∈ x, we only need to search for the Gödel number of the formula
ϕx(n̄, v1, ..., vm) in 0#. This obviously can be done using a computer program with 0# as an
oracle.

Finally, we note that it is fashionable nowadays to consider a countable object M#
0 (“the

minimal active baby mouse” according to Schimmerling’s The ABC’s of Mice) that is Turing
equivalent to 0#.

M#
0 is a countable model of some weak fragment of set theory. The real coding this

model is also a Π1
2 singleton. It is similarly canonical/universal (this is the “minimal” part),

in that it is the transitive collapse of the Σ1-hull of the empty set on any active baby mouse.
That is, if M is any active baby mouse, then HullM1 (∅) is isomorphic to M#

0 .
The two preceding paragraphs are really just a rough summary of Schimmerling’s The

ABC’s of Mice.
Taking stock: if there is a measurable cardinal, then there is a simply definable, canonical

object that witnesses the failure of L to approximate the true universe. Furthermore, it
witnesses the failure of L in a concrete manner (i.e., computing every real in L). The next
section shows that something similar happens below the consistency strength of “0# exists”.
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2 PSP(Π1
1) and the set C1

We say that a set X ⊆ R has the perfect set property, if it is either countable or has a perfect
subset. Perfect set property is one of the regularity properties of sets of reals (two other
famous ones are Lebesgue measurability and the property of Baire). For example, every
Borel set has the perfect set property. We write PSP(Π1

1) for the statement: every Π1
1 set

has the perfect set property.
By results in descriptive set theory, PSP(Π1

1) is revealed to be a large cardinal axiom.

Theorem 4. The following are equivalent

1. For all x ∈ R, (ω1)
V is an inaccessible cardinal in L[x].

2. PSP(Π1
1).

3. For all x ∈ R, P(ω) ∩ L[x] is countable.

Recall that the existence of an inaccessible cardinal is consistent with V = L, where
as “0# exists” is not. Also, 0# has much higher consistency strength than inaccessibles,
in that ZFC + “0# exists” proves the consistency of ZFC + “there are proper class many
inaccessibles”.

Question. Can the failure of L in the presence of PSP(Π1
1) can be witnessed by some

countable, simply definable, canonical object in a concrete manner?

It turns out the situation is surprisingly similar to that of 0#. To show this, some
recursion-theoretic machinery is needed. The following exposition follows the exposition
in Chong & Yu’s Recursion Theory. Another exposition can be found in Moschovakis’s
Descriptive Set Theory, chapters 4 and 5. The two expositions are essentially the same but
in different languages.

Definition 5. For a real x, write ωx1 for the supremum of the ordertypes of well-orderings
that are computable in the oracle x. When x is recursive, ωx1 is known as ωCK1 , the Church-
Kleene ordinal.

Definition 6. A set of reals is thin if it doesn’t have a perfect subset.

Definition 7. C1 = {x ∈ R | x ∈ Lωx
1
}

The following sequence of lemmas are needed in order to characterize C1.

Lemma 8. The relation {(x, y) | x ∈ ∆1
1(y)} is Π1

1.

Lemma 9 (Spector-Gandy Theorem). A set of reals X is Π1
1(y) if and only if there is a Σ1

formula ϕ(u, v) such that for any reals x

x ∈ X ⇔ (Lωx⊕y
1

[x⊕ y],∈) � ϕ(x, y)

Lemma 10 (Gandy Basis Theorem). Every nonempty Σ1
1(x) set of reals has a hyperlow

member, i.e., an element y such that y ≤T Ox and ωx⊕y1 = ωy1 .
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Lemma 11 (Guaspari’s Constructible Basis Theorem). Every nonempty Π1
1 set has a mem-

ber x such that x ∈ Lωx
1
.

Theorem 12. C1 is a Π1
1 thin set. That is, C1 is Π1

1 and does not have a perfect subset.

Proof. First, we use Spector-Gandy to calculate the complexity of C1: if x is a real, then

x ∈ C1 ⇔ Lωx
1
� (∃β)(x ∈ Lβ)

This give C1 a Π1
1 definition.

Second, we use the various basis theorems above to show that C1 is thin. Suppose not,
since perfect sets are branches on perfect trees, let B be the set of (codes of) perfect trees
whose branches are all in C1:

B := {T | T is a perfect tree whose branches are contained in C1}

Note that B is Π1
1: coding a perfect tree is arithmetical, and to say the infinite branches

of a tree are contained in C1 is to say every real tracing an infinite branch is in C1.
By Guaspari’s theorem, there is some (code of a) tree T ∈ B with T ∈ LωT

1
. Notice also

that [T ] is Σ1
1(T ) (“there exists a real tracing a path in T ...”). So, by Gandy Basis Theorem

applied to the set {x | x ∈ [T ] ∧ x /∈ ∆1
1(T )}, there is some x ∈ [T ] that is hyperlow: i.e.,

ωx⊕T1 = ωT1 .
To conclude: observe that ωx1 ≤ ωx⊕T1 = ωT1 . Now x /∈ ∆1

1(T ), which is to say x /∈ LωT
1

[T ].
Hence for this x, we have x /∈ Lωx

1
, a contradiction.

To show that C1 is the largest Π1
1 thin set, that is, if X is a Π1

1 thin set, then X ⊆ C1,
we use the lightface analogue of the Mansfield-Solovay theorem.

Theorem 13 (Mansfield, Solovay). Let X be Π1
1. If there is an x ∈ X with x /∈ Lωx

1
, then

there is a perfect tree T ∈ L, whose branches all belong to X.

Observe that the contrapositive of Mansfield-Solovay theorem says that, for any Π1
1 set

X, if X doesn’t have a perfect subset, then every element x ∈ X satisfies x ∈ Lωx
1
. That is,

x ∈ C1.
So, C1 is simply definable (it’s Π1

1), and it has some universal property (it’s the largest
Π1

1 thin set).
Finally, let us see that C1 makes the set constructible reals countable in the presence of

PSP(Π1
1). Some fine structure theory (projecta and master code) is needed for this.

Theorem 14. Every constructible real is computable from some element in C1.

Proof. Let x ∈ P(ω) ∩ L. Then x ∈ Jα+1 r Jα for some α < (ω1)
L. It follows that x is

Σn(Jα) for some n.
By fine structure theory, there is some real z ∈ Jα+1 r Jα that is a Σn-master code for

Jα. In this case, to say z is a Σn-master code for Jα is to say that (in the sense relevant to
us) 1) x is computable from z and 2) there is some well-ordering of ω in ordertype α that is
computable from z. Or in other words, ωz1 > α and x ≤T z.

To conclude, notice that the master code z ∈ Jα+1 ⊆ Lωz
1
. And so z ∈ Lωz

1
, which is to

say z ∈ C1.
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Corollary 15. Assume PSP(Π1
1). Then P(ω) ∩ L is countable.

Proof. Under the assumption, every Π1
1 set is either countable or has a perfect subset. Since

C1 is Π1
1 and doesn’t have a perfect subset, it is countable. By the last theorem, every

constructible real is computable from C1. So there can be countably many constructible
reals.

To summarize, a countable, simply definable, canonical object C1 is given, which in a
concrete manner witnesses L’s failure to approximate V in the presence of a large cardinal
axiom with consistency strength much lower than “0# exists”.

Question. Is there a model of some weak theory that corresponds to C1 like M#
0 corresponds

to 0#?
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