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Arguably, what makes an inner model “canonical” is the ability to capture truths about
real numbers of certain complexity. Fancier inner models capture more complex reals. The
purpose of this note is to record proofs of this so-called mouse capturing phenomena at the
level of ∆1

1 and ∆1
2. This phenomenon has a few different names: e.g., in [Sar13] this was

called Mouse Capturing, and in [Zhu16] this was called Mouse Set.
The phenomena take the following form: a) if a real number has a certain complexity, then

it is “captured” by certain models of weak fragments of set theory b) no other real number
gets in the inner model in question. Sargsyan describes this as “the spirit of canonicity in
this context is that no random or arbitrary information is coded into the model. Every set
in L has a reason for being in it”.

The relevant measure of complexity here is the notion of “projective in a countable
ordinal”.

Definition 1. To say x is ∆1
n in a countable ordinal α is to say that there is some ∆1

n-
formula/relation D(u, v) such that (for a coding fixed in advance) whenever z is a code for
α, we have n ∈ x⇔ D(n, z).

1 The ∆1
2 case

Consider the “Gödel mouse”, the Lα’s. By Shoenfield absoluteness, coupled with an obser-
vation by Solovay, this mouse captures ∆1

2 truths:

Theorem 2. A real x ∈ P(ω) is ∆1
2 in a countable ordinal if and only if it is in L.

This theorem is a little bit surprising, because it is possible for there to be many many
countable ordinals that get mistaken by L as large cardinals. One would naively think that
a real ∆1

2 in one of those might code information that L cannot possibly know. But the
theorem tells us that L is in some sense omniscient about ∆1

2 facts.

Proof of Theoerm 2. If x ∈ L, then by the definition of L and GCH in L, x is definable over
some countable level Lα, say with the formula ϕ(v). So n ∈ x if and only if there is some real
(or equivalently for every real) coding a well-founded extensional structure of KP + V = L,
of height α, which additionally satisfies ϕ(n). This is a ∆1

2 statement with any code of α as
parameter.

Conversely, assume x is ∆1
2 in any code of α. If L � “α is countable.” then α has a code

in L. Using this code as parameter, one can then define x in L. By Shoenfield absoluteness,
this indeed defines x (∆1

2 definitions of reals are absolute between V and L).
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So without loss of generality, assume α is not countable in L. Let P ∈ L be the forcing
in L to collapse α. And now force with P × P. If G ×H is generic for this forcing over L,
then α has some code in L[G] and L[H], where one can carry out the ∆1

2 definition using
these codes. (Again, the definitions will be correct, by Shoenfield absoluteness).

The preceding paragraph shows that x ∈ L[G]∩L[H]. An observation by Solovay (Lemma
2.5 in [Sol70]) says that L[G] ∩ L[H] = L, thus concluding the proof.

2 The ∆1
1 case

The canonical inner model tied to hyperarithmetic theory is LωCK
1

. Thinking of LωCK
1

as
“hyperarithmetic mouse”, we have the following:

Theorem 3. A real x ∈ P(ω) is ∆1
1 in a countable ordinal if and only if it is in LωCK

1
.

Again, there are many many countable ordinals above ωCK1 . One would naively think that
such ordinals may provide additional information that takes one beyond hyperarithmetic
reals. It turns out that hyperarithmetical truths are captured by the hyperarithmetic mouse.

The hyperarithmetical mouse case is slightly trickier. Of course, by Theorem 2 the real in
question is in L. The difficulty is to give it a ∆1

1 definition (equivalently, placing it in LωCK
1

).
To reduce the need for parameters, we use complexity calculations related to the category
quantifier. One can equivalently use the analogous techniques for the measure quantifier.
The proof presented here follows the analogous proof about Σ0

α sets by Sami [Sam99]. First,
a few lemmas are needed.

Lemma 4. The relation x ∈ ∆1
1 (“x is hyperarithmetic”) is Π1

1.

Lemma 5 ([Har68]). We say a real r codes a pseudo-well-ordering (r ∈ pWO) iff every
∆1

1(r) subset of Field(r) has a least element (in the relation coded by r). The relation
x ∈ pWO is Σ1

1.

Lemma 6. For any r ∈ pWO such that ωr1 = ωCK1 , the relation coded by r has a recursive
isomorphic copy.

Lemma 7 (Gandy Basis Theorem). Every nonempty Σ1
1 set of reals has a hyperlow element,

i.e., a real r such that ωr1 = ωCK1 .

Lemma 8 (Category Quantifier Calculation, see [Kec12], Theorem (29.22)). If ϕ(x, y) is
∆1

1, then so is “there are co-meagerly many y ∈ S∞ such that ϕ(x, y)”

Here’s the key idea of the proof: for x ∈ ∆1
1(α), we want to provide a ∆1

1 definition. We
observe that coding α is a common property relative to S∞ (the set of bijections f : ω → ω)
in the following sense: if r codes a well-ordering relation on ω of ordertype α, then any
bijection on ω will give rise to another such well-ordering (which we shall write as f ∗ r).
This will allow us to reduce ∆1

1-in-a-code to ∆1
1-comeagerly-many-in-S∞, and with the help

of the category quantifier calculation lemma, we can dispense the need for parameters. The
trick here is to do this to possibly some other member of set of counterexamples to the
theorem, not necessarily the particular x that we started with.
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Proof of Theorem 3. Let x be ∆1
1 in a countable ordinal, say it’s defined by the ∆1

1 relation
ϕ(n, r). Suppose towards a contradiction that x /∈ ∆1

1.
Begin by noticing that we have: fix r a code for α, then for all and n ∈ ω,

n ∈ x⇔ (∀f ∈ S∞)(ϕ(n, f ∗ r))⇔ (∃f ∈ S∞)(ϕ(n, f ∗ r))

Now consider the set of x-like counterexamples

A = {(y, v) | y /∈ ∆1
1∧v ∈ pWO∧ for co-meagerly many f ∈ S∞, (∀n ∈ ω)(n ∈ y ⇔ ϕ(n, f∗v0))}

By the lemmas above, A is Σ1
1, and since we assumed (x, r) is such a counterexample,

A is not empty. Now apply Gandy Basis to find some (y0, v0) such that ω
(y0,v0)
1 = ωCK1 .

In particular, ωv01 = ωCK1 . By Lemma 6, there is a recursive real w coding an isomorphic
relation as the one coded by v0.

But now it is easy to define y0: for any natural number n:

n ∈ y0 ⇔ for co-meagerly many f ∈ S∞, ϕ(n, f ∗ w)

To conclude, observe that since w is recursive, the above definition is ∆1
1, contradicting

the choice of y0.
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