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Overview

Take Home Message
Using the Church-Turing Thesis (or its analogues elsewhere) in actual
mathematical practice serves two slightly different purposes.

1 Rigor Assurance
2 Coding Invariance

Recognizing the distinction leads to nice philosophical payoff.
Certain disagreements in the literature are naturally dissolved.
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Disclaimer

What this talk is not about

In this talk, we will set aside the most classical use of the CTT: that our
formalization of the intuitive notion of effective procedure is right.

Instead...
We will focus on the use of the CTT in the technical literature, in its
capacity in facitlitating proofs and mathematical ideas.
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The Church-Turing Thesis

The CTT
A procedure is effectively feasible if and only if it can be implemented by a
Turing machine.
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How the CTT often gets used

Nies (2012). Computability and Randomness
Many other formal definitions for the intuitive notion of a computable
function were proposed.

All turned out to be equivalent. This lends
evidence to the Church-Turing thesis which states that any intuitively
computable function is computable in the sense of [Turing machines]. More
generally, each informally given algorithmic procedure can be implemented
by a Turing program.We freely use this thesis in our proofs: we give a
procedure informally and then take it for granted that a Turing program
implementing it exists.

This is known in the literature as “proof by Church’s Thesis (or proof by
the Church-Turing Thesis)”
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Point of the Nies quote

1 To recall a familiar use of the CTT in the technical literature.

2 To illustrate a departure of the primary use of the CTT in actual
mathematical practice from how it is used in more philosophical
contexts.
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Rigor Assurance

Rogers (1987). Theory of recursive functions and effective
computability
Such methods ... permit us to avoid cumbersome detail and to isolate
crucial mathematical ideas from a background of routine manipulation. We
shall see that much profound mathematical substance can be discussed,
proved, and communicated in this way ... Proofs which rely on informal
methods have, in their favor, all the evidence accumulated in favor of
Church’s Thesis.
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Outside of classical computability

Definition
For an admissible ordinal α and A ⊆ α the following are equivalent:

1 A is Σ˜1-definable in Lα.
2 A is computably enumerable by Koepke’s α-Turing machines.
3 A is semi-decidable by Koepke’s α-register machines.
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Outside of classical computability

Greenberg (2020). Two applications of admissible computability
In general, working in α-computability, with experience, we apply some
kind of Church-Turing thesis to α-computable functions ... we eventually
cease to write down precise Σ1 formulas ... Instead, we develop an intuition
as to what constitutes “legal” α-computable manipulations of α-finite
objects (elements of Lα), and get a sense of the “time” that a process
takes; if it takes fewer than α steps, then it “halts”.

Notice
Greenberg is certainly not expecting the reader to develop an intuition for
what is effective infinitarily (whatever that means). He is expecting the
reader to develop an intuition for how to translate informal argument into
formal ones.
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One more example

Hamkins & Lewis, Infinite Time Turing Machines
“We will assume complete familiarity with the notions of Turing machines
and ordinals and, in describing our algorithms, take the high road to avoid
getting bogged down in Turing machine minutiae. We hope the readers will
appreciate our saving them from reading what would otherwise resemble
computer code.” (Hamkins & Lewis, 2000)
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Rigor Assurance
The fact that numerous formalizations of the same intuitive concept turn
out to be equivalent provides a kind of assurance that intuitive, informal,
natural language used in proofs can always be safely translated back to
formal language, if one wishes.
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Question
In the context of facilitating a proof, is this the only purpose that is served
by appeals to the Church-Turing Thesis?
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San Mauro’s tension

The Standard View towards proofs by Church’s Thesis (according to
San Mauro (2018))
Proof by Church’s Thesis = proof is left to the reader.

San Mauro: taking this attitude misses out on a key aspect of what makes
computability unique.
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The Standard View towards proofs by Church’s Thesis (according to
San Mauro (2018))
Proof by Church’s Thesis = proof is left to the reader.

i.e., exactly the kind of time-saving practice familiar to mathematicians
from any other field. No additional significance.

San Mauro: taking this attitude misses out on a key aspect of what makes
computability unique.

26 / 62



San Mauro’s tension

The Standard View towards proofs by Church’s Thesis (according to
San Mauro (2018))
Proof by Church’s Thesis = proof is left to the reader.

San Mauro: taking this attitude misses out on a key aspect of what makes
computability unique.

27 / 62



San Mauro’s illustration: construction arguments in computability
Many computability arguments begin with enumerating (say) the r.e.
sets.

Using this enumeration we construct many other objects of interest.
Taking the Standard View on this kind of constructions entails that
one still cares about the enumeration, despite not being bothered to
write it down.

So the proof is technically a proof schema, giving a
recipe of construction for each enumeration.
But what makes computability unique is that the properties of interest
remain invariant under different enumerations. They are in some sense
absolute properties of the objects, not a result of the coding.
This dis-entanglement with formalisms is what makes computability
unique and what proponents of the Standard View are missing out on.

28 / 62



San Mauro’s illustration: construction arguments in computability
Many computability arguments begin with enumerating (say) the r.e.
sets.
Using this enumeration we construct many other objects of interest.

Taking the Standard View on this kind of constructions entails that
one still cares about the enumeration, despite not being bothered to
write it down.

So the proof is technically a proof schema, giving a
recipe of construction for each enumeration.
But what makes computability unique is that the properties of interest
remain invariant under different enumerations. They are in some sense
absolute properties of the objects, not a result of the coding.
This dis-entanglement with formalisms is what makes computability
unique and what proponents of the Standard View are missing out on.

29 / 62



San Mauro’s illustration: construction arguments in computability
Many computability arguments begin with enumerating (say) the r.e.
sets.
Using this enumeration we construct many other objects of interest.
Taking the Standard View on this kind of constructions entails that
one still cares about the enumeration, despite not being bothered to
write it down.

So the proof is technically a proof schema, giving a
recipe of construction for each enumeration.

But what makes computability unique is that the properties of interest
remain invariant under different enumerations. They are in some sense
absolute properties of the objects, not a result of the coding.
This dis-entanglement with formalisms is what makes computability
unique and what proponents of the Standard View are missing out on.

30 / 62



San Mauro’s illustration: construction arguments in computability
Many computability arguments begin with enumerating (say) the r.e.
sets.
Using this enumeration we construct many other objects of interest.
Taking the Standard View on this kind of constructions entails that
one still cares about the enumeration, despite not being bothered to
write it down.

So the proof is technically a proof schema, giving a
recipe of construction for each enumeration.

But what makes computability unique is that the properties of interest
remain invariant under different enumerations. They are in some sense
absolute properties of the objects, not a result of the coding.
This dis-entanglement with formalisms is what makes computability
unique and what proponents of the Standard View are missing out on.

31 / 62



San Mauro’s illustration: construction arguments in computability
Many computability arguments begin with enumerating (say) the r.e.
sets.
Using this enumeration we construct many other objects of interest.
Taking the Standard View on this kind of constructions entails that
one still cares about the enumeration, despite not being bothered to
write it down. So the proof is technically a proof schema, giving a
recipe of construction for each enumeration.
But what makes computability unique is that the properties of interest
remain invariant under different enumerations. They are in some sense
absolute properties of the objects, not a result of the coding.

This dis-entanglement with formalisms is what makes computability
unique and what proponents of the Standard View are missing out on.

32 / 62



San Mauro’s illustration: construction arguments in computability
Many computability arguments begin with enumerating (say) the r.e.
sets.
Using this enumeration we construct many other objects of interest.
Taking the Standard View on this kind of constructions entails that
one still cares about the enumeration, despite not being bothered to
write it down. So the proof is technically a proof schema, giving a
recipe of construction for each enumeration.
But what makes computability unique is that the properties of interest
remain invariant under different enumerations. They are in some sense
absolute properties of the objects, not a result of the coding.
This dis-entanglement with formalisms is what makes computability
unique and what proponents of the Standard View are missing out on.

33 / 62



San Mauro’s conclusion

San Mauro (2018)
[The set constructed in the example] does not refer to any of its formal
definitions ... The notion ... is better understood as an absolute one, i.e.
independent from the chosen formalism
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In other words

San Mauro’s claim
Appealing to the CTT in a proof achieves more than, say, leaving an
exercise to the reader. It commits us to dealing with the One True Notion
of computation.
Proponents of the Standard View overlooks this aspect when they reduce
the practice to exercise-left-to-reader.
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My diagnosis
There’s no serious disagreement between San Mauro and proponents of the
Standard View. The apparent disagreement stems from a conflation
between two different purposes served by appeals to CTT:

Having faith that my reader can fill in the formal details. (Rigor
Assurance)
versus
Not caring how they choose to fill in the formal details. Because it
doesn’t matter. (Coding Invariance)
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Coding Invariance

Kleene (1952)
“The notion of λ-definability has the variants λ-K -definability ... and
λ-δ-definability ... also there is a parallel development, started by
[Schönfinkel, Curry, and Rosser], which leads to a notion that we may call
combinatory definability, proved equivalent to λ-definability by Rosser.”

Notice
This is a different facet to the CTT than the equivalence between different
formalisms like Turing machines and λ-calculus. This is invariance under
different codifications of the same formalism.
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Moschovakis (2016). Hyperarithmetical Sets
“Codings are useful for expressing succinctly uniform properties of coded
sets. ... It is clear that propositions ... which hold uniformly for a certain
coding also hold uniformly for every equivalent coding.”
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Moschovakis (2016). Hyperarithmetical Sets
“Codings are useful for expressing succinctly uniform properties of coded
sets. ... It is clear that propositions ... which hold uniformly for a certain
coding also hold uniformly for every equivalent coding.”

Moschovakis (2016). Hyperarithmetical Sets
“For a classical example, consider the coding of recursive partial functions
specified by [Kleene’s Normal Form Theorem]. Its precise definition
depends on the choice of computation model that we use, Turing
machines, systems of recursive equations or whatever [that is, each choice
of model gives rise to a different enumeration of the recursive partial
functions], but all these codings are equivalent and so uniform propositions
about them are coding invariant.”
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Failure of Coding Invariance

1 One of the earliest definitions of quantum Turing machines allowed for
arbitrary transition amplitudes. (Bernstein & Vazirani, 1993)

2 The amplitudes, being real numbers, can code all sorts other
information. This enabled Adleman et al. (1997) to prove that the
class of sets decidable with bounded error in polynomial time has
uncountable cardinality and contains sets of all Turing degrees.

3 Subsequent journal version of Bernstein and Vazirani (1997) corrected
the definition to only allow efficiently computable transition
amplitudes.

4 Careful choices were then made in the paper to ensure that, in terms
of computability (i.e., what are computable simplciter), the resulting
machines are equivalent to classical Turing machines.

5 The resulting definition of quantum Turing machines is now the canon.

42 / 62



Failure of Coding Invariance

1 One of the earliest definitions of quantum Turing machines allowed for
arbitrary transition amplitudes. (Bernstein & Vazirani, 1993)

2 The amplitudes, being real numbers, can code all sorts other
information. This enabled Adleman et al. (1997) to prove that the
class of sets decidable with bounded error in polynomial time has
uncountable cardinality and contains sets of all Turing degrees.

3 Subsequent journal version of Bernstein and Vazirani (1997) corrected
the definition to only allow efficiently computable transition
amplitudes.

4 Careful choices were then made in the paper to ensure that, in terms
of computability (i.e., what are computable simplciter), the resulting
machines are equivalent to classical Turing machines.

5 The resulting definition of quantum Turing machines is now the canon.

43 / 62



Failure of Coding Invariance

1 One of the earliest definitions of quantum Turing machines allowed for
arbitrary transition amplitudes. (Bernstein & Vazirani, 1993)

2 The amplitudes, being real numbers, can code all sorts other
information. This enabled Adleman et al. (1997) to prove that the
class of sets decidable with bounded error in polynomial time has
uncountable cardinality and contains sets of all Turing degrees.

3 Subsequent journal version of Bernstein and Vazirani (1997) corrected
the definition to only allow efficiently computable transition
amplitudes.

4 Careful choices were then made in the paper to ensure that, in terms
of computability (i.e., what are computable simplciter), the resulting
machines are equivalent to classical Turing machines.

5 The resulting definition of quantum Turing machines is now the canon.

44 / 62



Failure of Coding Invariance

1 One of the earliest definitions of quantum Turing machines allowed for
arbitrary transition amplitudes. (Bernstein & Vazirani, 1993)

2 The amplitudes, being real numbers, can code all sorts other
information. This enabled Adleman et al. (1997) to prove that the
class of sets decidable with bounded error in polynomial time has
uncountable cardinality and contains sets of all Turing degrees.

3 Subsequent journal version of Bernstein and Vazirani (1997) corrected
the definition to only allow efficiently computable transition
amplitudes.

4 “we need to constrain the entries allowed in the transition function ...
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Example from logic: iterated consistency

Define T0 := ZFC, T2n := Tn + Con(Tn), T3·5e = ZFC ∪
⋃
TΦe(n). Now

coding peculiarity follows:

Theorem (Turing’s completeness theorem)

For every true Π0
1 sentence φ, there exists a notation in d in Kleene’s O

such that φ is provable in Td .

Lesson
If we want to talk about iterated consistency statements, then the theories
in the limit are susceptible to coding peculiarities.
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A quick comparison

Rigor Assurance
Confluence ⇒ not having to worry about informal language breaking a
proof.

Coding Invariance
Confluence ⇒ not having to worry that different codifications end up
making the proofs talk about something else entirely.
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A very illuminating example

Invariant descriptive set theory
The abstract study of how difficult classification problems are. (E.g., “If I
know how to tell whether these two quantities are identical, then can I tell
whether these two structures are isomorphic?”)

A worry
In IDST, we are not really talking about the mathematical structures
themselves, but talk about coded versions of them. E.g., a finitely
generated countable group is coded by a function f : N2 → N, telling us
how the group operation behaves; or as a subgroup of some universal group
(say the free group Fω).
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A very illuminating example

Gao’s Thesis, (Gao, 2008, p. 328)
For any class H of mathematical structures, if (X1,Ω1) and (X2,Ω2) are
two standard Borel spaces naturally coding elements of H, then there exists
a Borel map f : X1 → X2 such that f (x) and x are isomorphic as
mathematical structures for every x ∈ H.

Gao’s Thesis, (Gao, 2008, p. 328)
“Any choice of coding/presentation of a structure is as good as any other.”

This is classic Coding Invariance. Compare it with Gao’s earlier appeal to
proof by the Church-Turing Thesis:

Gao (2008, p. 24)
All formal definitions of computability have been shown to be equivalent ...
we will not deal with the details of the above definition, but will rather
adopt the Church-Turing Thesis ... Thus if a function is intuitively
computable by an informal algorithm then by the Church-Turing Thesis we
may conclude that it is formally computable without checking the details of
the formal definitions.
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Rigor Assurance
Confluence ⇒ not having to worry about invalidity brought by translating
from informal to formal language.

Coding Invariance
Confluence ⇒ not having to worry pseudo-insights smuggled in by the
choice of coding.
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Resolution of San Mauro’s tension

The Standard View is a view about the Rigor Assurance aspect of how
CTT is used
Proponents of SV are right that this is nothing more than leaving the
exercise to the reader.
This is different from Coding Invariance.
San Mauro is right that the remarkable invariance under different
codings is unique to the study of computability.
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One closing disclaimer...

Maddy, V = L and Maximize
Given that a naturalistic philosopher brings no special modes of argument
from philosophy, every argument she gives must be based on modes of
argument available to any mathematician qua mathematician; at best, she
will make explicit what is already implicit. Unsatisfying as this may be in
dramatic terms, a good naturalistic argument should not strike the
practitioner as late- breaking news; at best, it will fall so far short of
originality as to qualify as a commonplace. Given this goal, the best
confirmation of success would be for the mathematician to shrug and say,
‘Of course, everybody knows that.’
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